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Résumé (Français)

La communauté d’intelligence artificielle a été capable de créer des algorithmes pour certaines tâches
non triviales dont la performance est comparable ou supérieure aux performances humaines. Bien que
non triviales, ces tâches peuvent être résolues avec la puissance de calcul des ordinateurs en suivant une
liste formelle de règles. Par exemple en 1997, Deep Blue, un super calculateur capable de jouer aux
échecs a battu le champion du monde d’échecs: le russe Garry Kasparov. Ce fut la première victoire d’un
ordinateur face à un champion du monde d’échecs. Deep Blue était basé sur un algorithme de force brute
qui explorait un nombre maximum de coups dans un temps donné et choisissait le meilleur d’entre eux.
Cependant, nonobstant ces succès, certaines tâches qui sont naturelles pour les êtres humains, telles que la
classification d’objets ou la compréhension de conversations, restent compliquées à résoudre numériquement.
Ces problèmes reposent sur des concepts intuitifs et sont compliqués à formaliser. C’est pourquoi une
méthode similaire à Deep Blue ne peut pas capturer toutes les complexités cachées. Ces différents concepts
nous amènent à considérer une nouvelle approche pour résoudre ces tâches: l’apprentissage machine.

Les différences et forces des algorithmes d’apprentissage machine par rapport aux autres algorithmes
sont leurs capacités à apprendre sans l’aide d’opérateurs humains. En faisant des erreurs sur des exemples
d’entraînement, les algorithmes s’adaptent afin de se rapprocher de la réponse désirée. Ils sont ensuite
capable de faire des prédictions sur des situations qu’ils n’ont pas vu lors de leur entraînement. Cela leur
donne l’unique capacité d’effectuer des tâches qui sont naturelles pour des êtres humains. Les potentielles
applications de l’apprentissage machine sont nombreuses et le domaine a déjà été appliqué aux voitures
autonomes, à la détection de cancers ou à la traduction. Récemment, une classe spécifique d’algorithme
d’apprentissage machine a poussé les performances encore plus loin. Cette classe d’algorithme est appelée
apprentissage profond.

Les modèles d’apprentissage profond sont un cas particulier d’apprentissage machine. Les différences
résident dans leurs constructions. Ce sont des réseaux de neurones artificiels qui sont composés de
nombreuses couches, elles mêmes composées de nombreux neurones. Cela amène ces architectures à
posséder un grand nombre de neurones ce qui augmente le nombre de calculs à effectuer afin de les entraîner.
Leur entraînement n’a été possible qu’avec l’arrivée de cartes graphiques puissantes ce qui explique leur
avènement récent. Cependant, le succès de l’apprentissage profond est aussi dû aux développements récents
de domaines mathématiques, qui ont aidé les réseaux de neurones à résoudre les problèmes désirés. Cette
thèse porte sur l’étude des différentes interactions de l’apprentissage profond avec l’un de ces domaines
appelé transport optimal.

Apprentissage profond et transport optimal. Les premiers architectures de réseaux de neurones
peuvent être tracées au milieu du vingtième siècle [Rosenblatt 1958] et les premières architectures de réseaux
profonds, ainsi que leur entraînement, trente ans plus tard [Rumelhart 1986,LeCun 1989,Lecun 1998].
Bien que ces architectures ont été inventés il y a une trentaine d’années, les chercheurs ont fait face aux
limites de calculs des ordinateurs à cause de la taille des réseaux. En 2012, sans se décourager face à ces
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limites, les chercheurs ont réussi à avoir de meilleurs résultats avec des modèles d’apprentissage profond
qu’avec des algorithmes d’apprentissage machine sur un problème concret de classification. Cette année
là, le réseau de neurones AlexNet [Krizhevsky 2012], entraîné sur une tâche de classification avec des
gradients stochastiques et des cartes graphiques, a atteint la plus haute performance jamais réalisé sur
la compétition ImageNet [Deng 2009]. Ce premier succès retentissant sur un problème de classification,
couplé avec l’amélioration des cartes graphiques, a amené la communauté scientifique à reconsidérer et à
développer le domaine de l’apprentissage profond.

Depuis ce succès, l’apprentissage profond est devenu la classe d’algorithme la plus performante
pour réaliser des décisions basées sur des données. Pour pousser les performances de l’apprentissage
profond encore plus loin, de nombreux travaux de recherche ont été conduits afin de trouver de nouvelles
architectures de réseaux de neurones. Par exemple en classification, l’architecture ResNet s’est montrée
particulièrement performante afin de réduire certains problèmes d’entraînement [He 2016]. En segmentation,
les chercheurs ont développé l’architecture U-net [Ronneberger 2015]. Une autre approche qui a permis
d’améliorer significativement les performances des modèles d’apprentissage est l’utilisation des minis lots
couplée avec un algorithme d’optimisation. En effet, les réseaux de neurones sont entraînés avec des
algorithmes d’optimisation de premier ordre comme par exemple la descente de gradient, malgré le fait
que ces réseaux ne soient pas convexes. Dans un régime de données massives, utiliser la descente de
gradient signifierait le calcul d’un gradient à chaque itération de la descente, ce qui coûte cher à calculer.
C’est pourquoi afin d’accélérer le calcul d’une itération, la communauté s’est tournée vers l’optimisation
stochastique et l’algorithme de gradient stochastique (SGD). Le prix à payer d’utiliser SGD est une
convergence plus lente nécessitant un plus grand nombre d’itérations de l’algorithme. Cependant, son coût
global reste inférieur car ses itérations sont moins coûteuses. Plusieurs variantes de SGD sont apparues
telles qu’Adam [Kingma 2015] ou RMSprop [Tieleman 2012a]. Il est donc naturel de s’assurer de la
convergence de ces algorithmes stochastiques vers une bonne solution lorsqu’une nouvelle fonction de coût
est utilisée avec les réseaux de neurones.

Suivant ces développements fondamentaux, l’apprentissage profond est aujourd’hui état de l’art sur
bon nombre de domaines à la fois en apprentissage supervisé et non supervisé, tels qu’en adaptation de
domaine [Ganin 2015], en segmentation [Ronneberger 2015] et en modèles génératifs [Brock 2019]. Son
utilisation s’étend aussi à d’autres domaines comme la physique [Schütt 2017] ou la biologie [Jumper 2021].
L’amélioration rapide de la compréhension de l’apprentissage profond est aussi possible grâce aux multiples
ressources libres. Nous souhaiterions mentionner à ce titre les librairies PyTorch [Paszke 2017] et
TensorFlow [Abadi 2015].

Cependant, il est important de mentionner que les réseaux de neurones profonds ne sont pas les
seuls moteurs derrière les succès de l’apprentissage profond. Par exemple, les problèmes d’adaptation de
domaine et les modèles génératifs nécessitent de comparer des ensembles de données entre eux. Sur ces
problèmes, les réseaux de neurones transforment les données sur lesquelles ils sont appliqués en nouvelles
données. Mathématiquement, cela correspond à créer une mesure image et donc à de nouveaux ensembles
de données. Ainsi, résoudre ces problèmes nécessite une notion de distance entre des ensembles de données.
Pour définir une telle distance, nous devons tout d’abord correctement représenter les données sur lesquelles
nous travaillons.

Données d’entraînement comme mesure empirique. Afin de représenter les données mathéma-
tiquement, nous choisissons le cadre des mesures de probabilité. Les mesures de probabilité empiriques
prennent la forme d’une somme de Diracs αn =

∑n
i=1 aiδxi , où ∀i ∈ [1, n], ai > 0 et

∑n
i=1 ai = 1.

Cette représentation est appelée la représentation Lagrangienne et elle représente l’ensemble des données
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comme un seul objet mathématique. Comme nous supposerons que les données sont tirées de manière
indépendante et identiquement distribuées, nous choisissons des poids uniformes pour la mesure αn,
i.e., ∀i ∈ [1, n], ai = 1

n . Pour des applications spécifiques, comme dans le Chapitre 6, il est possible de
considérer d’autres poids.

Ainsi, la distance mathématiques dont nous avons besoin est une distance entre mesures de probabilité.
Il est donc possible de recourir aux divergences de Csiszar [Csiszar 1975]. Dans cette thèse, nous nous
concentrons sur le transport optimal pour comparer ces distributions. Le transport optimal peut être
vu comme une méthode générique pour créer une distance entre des ensembles de points à partir d’une
distance entre deux points. Contrairement aux divergences précédemment mentionnées, il considère des
aspects géométriques pour comparer les différentes distributions. C’est donc naturellement que le transport
optimal a été utilisé en apprentissage profond. Plus surprenant, l’apprentissage profond a été utilisé afin
d’estimer le transport optimal continu.

Transport optimal et apprentissage profond. L’origine du transport optimal remonte au 18ème
siècle dans les travaux de Gaspard Monge [Monge 1781]. Bien que le transport optimal a trouvé de
nombreuses applications en mathématiques théoriques et appliquées [Santambrogio 2015,Villani 2009],
il a aussi rencontré un certain succès en apprentissage machine [Peyré 2019]. Parmi ces succès, nous
pouvons noter son utilisation en adaptation de domaine en transportant les données sources vers le domaine
cible [Courty 2017a] ou bien en alignant les données plongées dans les réseaux de neurones [Damodaran 2018].
De plus, nous pouvons aussi mentionner son utilisation comme fonction de coût pour des problèmes de
classification multi-étiquettes, où le transport a été utilisé entre les prédictions des modèles d’apprentissage
et les étiquettes des données [Frogner 2015]. Cependant, l’application la plus célèbre du transport optimal
en apprentissage profond est son utilisation avec les réseaux génératifs adversaires [Goodfellow 2014b]
où il a été utilisé en tant que fonction dans Wasserstein GAN [Arjovsky 2017]. Nous terminons par les
différentes applications en biologie [Schiebinger 2019], en astrophysique [Frisch 2002] ou en traitement du
signal [Kolouri 2017].

Afin de comprendre ses succès et d’améliorer les performances des méthodes basées sur le transport
optimal, les chercheurs ont étudié plusieurs aspects du transport optimal. Le premier aspect est l’estimation
statistique du transport car en apprentissage profond, les données utilisées vivent en grandes dimensions.
Plusieurs recherches ont été faites pour étudier le taux de convergence en population. Le cas du
transport optimal exact a été étudié dans [Dudley 1969,Weed 2019] et sa variante entropique dans
[Genevay 2019,Mena 2019]. Concernant le calcul du transport optimal, celui-ci est bien trop élevé
pour que le transport soit utilisé sur des jeux de données à large échelle. C’est pourquoi beaucoup de
recherches ont été faites afin de réduire ce coût de calcul. Avec une régularisation entropique, le transport
peut être efficacement calculé sur des cartes graphiques avec l’algorithme de Sinkhorn [Cuturi 2013].
De plus, la complexité algorithmique de l’algorithme de Sinkhorn a été étudiée dans [Altschuler 2017].
D’autres stratégies basées sur une approximation du transport avec des minis lots ont été développées
[Genevay 2018,Damodaran 2018,Salimans 2018] mais un formalisme rigoureux était manquant.

Enfin, des variantes du transport optimal ont trouvé de nombreuses applications. Par exemple, la
distance de Gromov-Wasserstein permet de comparer des mesures de probabilités qui vivent dans différents
espaces métriques. Elle a été appliquée pour des modèles génératifs [Mémoli 2011,Bunne 2019] ou sur
des graphes [Vayer 2019a]. Des variantes avec des contraintes relaxées ont été utilisées afin de rendre le
transport robuste aux données aberrantes [Chapel 2020,Balaji 2020].
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Apprentissage profond et transport optimal. L’apprentissage profond peut-être utilisé pour ap-
proximer la formulation continue du transport optimal. Comme les mesures de probabilité sont inconnues
dans beaucoup d’applications, nous nous reposons sur des mesures empiriques des mesures inconnues.
Ainsi nous ne pouvons estimer que la version discrète du transport optimal. Les potentielles duaux du
transport optimal peuvent être approximer avec un réseau de neurones comme dans [Arjovsky 2017], ou
nous pouvons utiliser un réseau de neurones pour approximer une transformation entre les domaines.

L’objectif de cette thèse est d’améliorer l’état des connaissances sur :

• Comment le transport optimal peut-être utilisé en apprentissage profond pour de nouvelles applica-
tions ?

• Est-ce que l’approximations du transport optimal par minis lots définit un problème de transport?

Les contributions de cette thèse

Cette thèse a débuté en Novembre 2018 et contient des contributions sur les interactions du transport
optimal et de l’apprentissage profond. Les différentes contributions peuvent être séparées en deux parties.
Dans la première partie, nous développons l’utilisation du transport optimal en tant que fonction de coût
pour l’apprentissage profond.

• Dans notre travail initial [Fatras 2021a], nous étudions le problème des étiquettes corrompues. Cela
correspond au problème d’apprentissage supervisé où une proportion des étiquettes est corrompue,
ce qui diminue les performances de généralisation des modèles d’apprentissage profond [Zhang 2017].
Pour résoudre ce problème, nous proposons d’utiliser le transport optimal, entre les étiquettes et les
prédictions, comme fonction de coût dans l’entraînement virtuel adversaire (VAT) [Miyato 2018a].
VAT promeut une uniformité locale de la prédiction du classifier en pénalisant les changements
brutaux de la classification pour de faibles perturbations des données. La pénalisation est "isotrope"
entre toutes les classes, ce qui peut ne pas être optimal lorsque deux classes sont similaires. Incorporer
le transport optimal dans VAT permet de moduler la force de la régularisation en fonction de la
similarité sémantique des classes. Intuitivement, nous voulons des frontières complexes lorsque les
classes sont similaires et des frontières lisses lorsque les classes ne le sont pas. Ce comportement est
encouragé en choisissant de nouveaux coûts de transport comme discuté dans le Chapitre 5.

• Dans un second travail, nous avons utilisé le transport optimal afin de générer des données qui sont
incorrectement classifiées pour un classifier donné [Burnel 2021]. Nous utilisons WGAN, une variante
de réseaux adversaires génératifs [Goodfellow 2014b] basée sur le transport optimal, qui est capable
de générer des données réalistes [Arjovsky 2017,Gulrajani 2017]. A partir du classifier fixé et des
données d’entraînement, nous avons développé plusieurs stratégies pour créer de nouvelles mesures de
probabilité pour les données d’entraînement. Ces nouvelles mesures donnent plus d’importance aux
exemples incorrectement classifiés par le classifier. Ensuite, nous donnons cette nouvelle distribution
au WGAN afin de générer des données incorrectement classifiées.

Les publications associées à ces contributions sont rassemblées dans la liste suivante:

• [Burnel 2021] Jean-Christophe Burnel, Kilian Fatras, Rémi Flamary and Nicolas Courty. Generating
natural adversarial Remote Sensing Images. In: IEEE Transactions on Geoscience and Remote
Sensing (TGRS), 2021.
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• [Fatras 2021a] Kilian Fatras, Bharath Damodaran, Sylvain Lobry, Rémi Flamary, Devis Tuia and
Nicolas Courty. Wasserstein Adversarial Regularization on label noise. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2021.

• [Burnel 2020] Jean-Christophe Burnel, Kilian Fatras, Nicolas Courty. Generating natural adversarial
hyperspectral examples with a modified Wasserstein GAN. In: C&ESAR 2020.

Dans la seconde partie, nous étudions comment une approximation usuelle et performante du transport
optimal amène à des questions ouvertes sur ce dernier. Afin de réduire la complexité algorithmique dans de
nombreuses applications d’apprentissage profond, le transport est calculé entre des minis lots des données,
tirés uniformément aléatoirement. Les réseaux profonds sont ensuite entraînés avec SGD. La stratégie des
minis lots a aussi été utilisé avec le transport optimal de manière fructueuse [Genevay 2018,Muzellec 2020,
Damodaran 2018]. Cependant, calculer le transport optimal entre des minis lots ne correspond pas à
calculer le transport entre les mesures de probabilité entières. C’est pourquoi nous présentons une étude
théorique du transport optimal entre minis lots en tant que nouvelle fonction de coût.

• Dans nos travaux [Fatras 2021c,Fatras 2021b], nous proposons d’abord un formalisme rigoureux
de l’approximation par des minis lots. Nous construisons un estimateur non biaisé qui respecte les
marginales des mesures de probabilités. Nous donnons aussi une solution en forme close pour des
données 1D. Elle illustre les effets de l’approximation par minis lots sur le plan de transport. Nous
démontrons aussi que les minis lots construisent des connexions non optimales. Nous proposons
ensuite une nouvelle fonction de coût, basée sur le transport entre minis lots, qui corrige quelques
pertes causées par l’approximation. Nous étudions ensuite théoriquement les propriétés statistiques
et d’optimisation du transport optimal, afin de faire un premier pas dans la compréhension des
différents succès en apprentissage profond.

• Dans un travail successif, nous étudions aussi quelques limites de l’approximation des minis lots
[Fatras 2021b]. Nous montrons empiriquement que les connections non optimales peuvent diminuer
les performances des réseaux de neurones sur des applications spécifiques. Ces connexions sont des
conséquences du tirage des minis lots ainsi que des contraintes sur les marginales. En effet, au niveau
des minis lots, le tirage des données peut créer des données aberrantes qui seront transportées. Afin
de remédier à ce problème, nous proposons d’utiliser une variante du transport à contraintes relaxées
appelée transport optimal non balancé avec les minis lots. Nous montrons ensuite sur différentes
expériences que notre méthode surpasse l’approximation classique.

Ces contributions ont été publiées dans plusieurs publications:

• [Fatras 2021b] Kilian Fatras, Thibault Séjourné, Nicolas Courty and Rémi Flamary. Unbalanced
minibatch Optimal Transport; applications to Domain Adaptation. In: International Conference on
Machine Learning (ICML), 2021.

• [Fatras 2021c] Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval and
Nicolas Courty. In: arXiv:2101.01792 (Under Review)

• [Fatras 2020b] Kilian Fatras, Younes Zine, Rémi Flamary, Rémi Gribonval and Nicolas Courty.
Learning with minibatch Wasserstein: asymptotic and gradient properties. In: the 23rd International
Conference on Artificial Intelligence and Statistics (AISTATS), 2020.
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• [Fatras 2020a] Kilian Fatras, Younes Zine, Rémi Flamary, Rémi Gribonval and Nicolas Courty.
Divergence Wasserstein par lots. In: 52èmes Journées de Statistiques de la Société Française de
Statistique.

Durant sa thèse, l’auteur a aussi contribué à la librairie libre de transport optimal en python, qui a
été reconnue par la communauté à travers une publication. Finalement, il a aussi travaillé avec sur des
algorithmes stochastiques pour des régularisations complexes.

• [Flamary 2021] Rémi Flamary, et al. POT: Python Optimal Transport. In: Journal of Machine
Learning Research (JMLR) - Open Source Software, 2021.

• [Pedregosa 2019] Fabian Pedregosa, Kilian Fatras and Mattia Casotto. Proximal Splitting Meets
Variance Reduction. In: the 22nd International Conference on Artificial Intelligence and Statistics
(AISTATS), 2019.

Dans la prochaine section, nous détaillons les différentes parties et chapitres constituant cette thèse.

Organisation du manuscrit.

Cette thèse est divisée en trois parties correspondant aux différentes contributions faites par l’auteur.
La première partie fait un état des lieux de la littérature sur le transport optimal numérique ainsi que
de son utilisation en apprentissage profond. La seconde partie rassemble les premières contributions du
transport optimal comme fonction de coût en apprentissage profond. Après une courte introduction sur
les exemples adversaires, nous présentons notre régularisation basée sur des perturbations des données
et sur le transport optimal. Nous l’appliquons sur des problèmes de labels corrompus. Nous présentons
ensuite notre stratégie de pondérations des poids des mesures de probabilité afin de générer des exemples
incorrectement classifiés par un classifier pré-entraîné. Finalement, la troisième partie est dédiée à l’étude
de l’approximation du transport optimal par des minis lots. Nous décrivons un formalisme rigoureux ainsi
qu’une étude de ses limites. Nous détaillons à présent l’organisation du manuscrit.

Chapitre 2 rassemble des connaissances mathématiques et numériques élémentaires sur le transport
optimal aux lecteurs. Il présente les concepts fondamentaux derrière les formulations de Kantorovich
ainsi que de certaines variantes utilisées dans ce manuscrit. Parmi toutes les variantes, nous présentons
la variante à régularisation entropique ainsi que la variante du transport non balancé et la variante
Gromov-Wasserstein. Nous présentons aussi les algorithmes de résolutions du transport optimal régularisé
avec l’entropie. Un lecteur familier avec ces concepts peut passer ce chapitre, cependant il définit aussi
des notations qui seront utilisées tout au long de cette thèse.

Chapitre 3 décrit les différentes utilisations du transport optimal en tant que fonction de coût en
apprentissage profond. Plus spécifiquement, il est divisé en deux parties. La première partie évoque les
différents problèmes de classification telles que la classification supervisée, la classification semi-supervisée,
la classification avec labels corrompus et l’adaptation de domaine. Nous détaillons ensuite la littérature sur
les solutions aux problèmes de classification qui utilisent le transport optimal. La seconde partie est dédiée
à l’étude de modèles génératifs et comment le transport optimal a été utilisé avec succès. Nous discutons
d’abord des modèles génératifs standards puis comment ces modèles ont été modifiés afin d’utiliser le
transport optimal. Un lecteur familier avec les applications standards d’apprentissage profond pourrait ne
pas lire cette partie. Cependant, elles rassemblent des concepts et des algorithmes qui seront utilisés dans
les différentes expériences présentées dans cette thèse.
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Chapitre 4 nous amène à la seconde partie de ce manuscrit. Il présente les différents concepts d’exemples
adversaires en apprentissage profond. Nous donnons une définition générale ainsi que les stratégies basiques
afin de générer de tels exemples. Nous expliquons ensuite comment ces exemples peuvent pirater des
modèles pré-entraîner et les différents concepts derrière ces attaques pirates. Finalement, nous montrons
comment ces exemples peuvent être utilisés pour définir une nouvelle stratégie d’apprentissage appelée
entraînement adversaire virtuel (VAT), pour des problèmes de classification semi-supervisé. Cet algorithme
promeut une prédiction locale uniforme autour de chaque donnée d’entraînement. Il le fait en pénalisant
de large changement dans la classification.

Chapitre 5 présente notre première contribution. Il étudie le problème de classification avec des labels
corrompus. Basé sur l’entraînement adversaire virtuel, nous utilisons le transport optimal dans cette
régularisation qui permet de lisser les frontières entre les classes très différentes, comme le fait VAT.
Cependant, le transport optimal nous permet aussi d’obtenir des frontières complexes entre les classes
proches les unes des autres. Nous évaluons ensuite notre méthode sur des jeux de données standards et
concrets.

Chapitre 6 présente une nouvelle distribution de probabilité qui permet de générer des exemples
incorrectement classifiés par un classifier pré-entraîné. Après avoir décrit plusieurs stratégies de pondération
des poids, nous créons empiriquement une nouvelle distribution basée sur une fonction softmax . Nous
utilisons ensuite un modèle génératif afin de générer ces données incorrectement classifiées. Afin de montrer
la pertinence de cette approche, nous évaluons les exemples générés afin de pirater des classifiers entraînés
sur des données satellites.

Chapitre 7 ouvre la troisième et dernière partie de cette thèse. Nous présentons l’approximation du
transport optimal, qui est étudié théoriquement et empiriquement dans cette troisième partie. Afin
d’étudier cette approximation théorique, nous rappelons quelques résultats avancés de statistiques et
d’optimisation du transport optimal. Nous présentons les différentielles généralisées de Clarke qui
définissent une notion de régularité pour les fonctions localement Lipschitz [Clarke 1990]. Nous terminons
ce chapitre par une courte introduction aux U-statistiques qui apparaissent dans le formalisme des minis
lots [Hoeffding 1948,Hoeffding 1963].

Chapitre 8 est dédié à la définition rigoureuse du formalisme qui permet d’exprimer le transport optimal
par minis lots. Nous commençons tout d’abord par définir un formalisme dans le cas de mesures empiriques
et nous illustrons les conséquences sur le plan de transport. Nous prouvons aussi qu’une solution en
forme close existe lorsque les données vivent en 1D. Ensuite, nous définissons un formalisme général pour
toutes distributions et nous montrons que le transport optimal par minis lots n’est pas une distance.
Cela nous amène à définir une nouvelle fonction qui corrige certaines pertes du transport par minis lots.
Nous étudions la positivité de cette fonction de coût ainsi que ces performances statistiques. Après, nous
présentons des bornes de déviation entre les estimateurs que nous avons créés et leurs espérances pour
différentes hypothèses sur les mesures de probabilité. Nous terminons ce chapitre avec des expériences sur
des modèles génératifs et sur du transfert de couleur.

Chapitre 9 termine les contributions de cette thèse. Nous discutons les différentes limites du transport
optimal par minis lots à cause du tirage des minis lots ainsi que de la formulation originale du transport
optimal. Comme le transport a des contraintes sur les marginales, il est sensible aux données aberrantes.
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Or nous montrons que le tirage des minis lots peut créer artificiellement de telles données aberrantes.
Afin de réduire ces sensibilités, nous proposons de remplacer le transport optimal entre les minis lots par
une variante qui a des marginales relaxées telle que le transport optimal non balancé. Nous démontrons
empiriquement que le transport optimal non balancé entre les minis lots a de meilleures performances que
le transport optimal original entre les minis lots sur des expériences de flots de gradients et d’adaptation
de domaine.

Chapitre 10 conclut cette thèse et discute les potentielles directions pour les futures travaux sur les
interactions entre le transport optimal et l’apprentissage profond.

Appendice A rassemble les différentes preuves des résultats qui ont été annoncés dans les chapitres
précédents.
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The community of artificial intelligence has been able to design human-level performance algorithms
for non trivial tasks. While being non trivial, these tasks can be solved using list of formal rules and the
calculus power of computers. For instance in 1997, Deep Blue, a supercalculus computer which played
chess, was the first computer to beat a chess world champion, the Russian Garry Kasparov. It was based
on a brute force algorithm which explored the maximum possible number of moves in a certain time and
chose the best one among them. However, despite these successes, some challenging tasks that are natural
to human beings, like classifying different objects or understanding conversations, remained hard to solve.
These problems rely on intuitive concepts which are hard to formalize and a method like the one used by
Deep Blue can not catch all the hidden complexity. We thus need to rely on another approach to perform
these tasks, which is called Machine Learning.

The difference and strength of machine learning algorithms lie in their ability to learn from data,
without requiring human operators. By making mistakes on training samples, the algorithms are able to
adapt in order to match the desired outcome. They are then capable of making predictions on situations
they have not seen during their training. It gives them the unique ability to achieve repetitive tasks which
are natural to human beings. The potential applications of machine learning are wide and the domain
has already been applied for autonomous vehicles, cancer detection or language translation. Recently,
a specific class of machine learning algorithms pushed the performances of the domain even further by
improving almost all applications. This class of algorithms is called Deep Learning.

Deep learning models are a particular instance of machine learning algorithms. They are artificial
neural networks which are composed of many layers with many neurons. This leads to a very high number
of neurons and training these networks is computationally challenging. It has only be possible thanks to a
new class of hardware called Graphics Processing Units (GPUs). These networks allow a more complex
representation of training samples and thus they can make more complex predictions. However, deep
learning’s recent successes are also due to the development of recent mathematical fields, which helped
the neural networks to achieve the desired tasks. This thesis is about studying the different interactions
of deep learning with one of these mathematical areas called Optimal Transport (OT).



2 Chapter 1. Introduction

1.1 Deep Learning and Optimal Transport

The rise of Deep Learning. The first neural network architecture can be traced back to the middle
of the twentieth century [Rosenblatt 1958] and the first deep neural network architectures, as well as their
training procedure, thirty years latter [Rumelhart 1986,LeCun 1989,Lecun 1998]. In spite of their early
design, researchers faced computational limits due to the size of the networks. Undeterred by these limits,
in 2012, researchers made a first breakthrough on a real-world problem using these architectures. That
year, the heavy neural network AlexNet [Krizhevsky 2012], trained on a classification task with stochastic
gradient descent (SGD) and GPUs [Robbins 1951a], achieved by a large margin the highest performance
ever on the ImageNet competition [Deng 2009]. This first success in classification problems, coupled with
the computational improvements resulting from high performing GPUs, led the research community to
reconsider and develop the area of Deep Learning.

Since this success, deep learning has arisen as the current most competitive method to make data-
driven decisions. To improve its performances even further, a lot of work has been done to find relevant
architectures depending on the problem. For instance in computer vision and classification, the ResNet
architecture empirically eased the training of deep neural networks [He 2016]. In segmentation, researchers
developed the U-net architecture [Ronneberger 2015]. Another successful approach that improved deep
learning results was the use of minibatch training, coupled with a performing optimizer. Indeed, neural
networks are trained using gradient-based algorithms, such as gradient descent, despite the fact that they
are not convex. In a big data regime, using gradient descent would mean to compute a full gradient at
each iteration. Thus to accelerate the training of neural networks, the community has relied on stochastic
optimization [Bottou 2010]. Stochastic optimization only needs to compute a gradient of a minibatch of
data. The price to pay for using SGD is a slower convergence. However, the overall performance is faster
as one SGD iteration is a lot cheaper than one iteration of gradient descent. Several SGD variants were
published to fasten the training of neural networks or improve their results such as Adam [Kingma 2015]
or RMSprop [Tieleman 2012a]. It is thus a natural question to investigate the convergence of SGD towards
a good solution when a new loss function is used with neural networks.

Following these corner-stone developments, deep learning has reached state-of-the-art results on
many supervised and unsupervised problems, such as for instance domain adaptation [Ganin 2016],
segmentation [Ronneberger 2015] and generative modelling [Brock 2019]. Its use also expanded to other
research domains such as physics [Schütt 2017] and biology [Jumper 2021]. The rapidly growing knowledge
of deep learning is also possible thanks to the open-source mindset in the field. We highlight several deep
learning Python open-source libraries such as PyTorch [Paszke 2017] or TensorFlow [Abadi 2015], as well
as the JMLR open-source journal edition, which encourages the creation of open-source libraries.

Nonetheless, it is important to mention that deep neural networks were not the only reason behind
some recent machine learning successes. For instance, domain adaptation and generative modelling are
applications which require to compare sets of samples. A deep neural network is a transformation applied
on samples that mathematically defines a pushforward operator. When samples are fed to the network, it
leads to new sets of "embedded" samples, which correspond to pushforward distributions, that we want
to compare. Thus some mathematical notion of distance between sets of samples is needed. In order to
define such a distance, we first need to correctly represent sets of training samples as data distributions.

Training data as empirical measure. We consider the framework of probability measures, where we
associate an empirical probability measure to the collection of training data (xi)ni=1. The empirical measure
takes the form of a sum of Diracs αn =

∑n
i=1 aiδxi , where ∀i ∈ [1, n], ai > 0 and

∑n
i=1 ai = 1. This
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representation is called the Lagrangian representation and it represents a set of data as one mathematical
object. As we suppose that the data are independent and identically distributed, we choose the weights
as uniform, i.e., ∀i ∈ [1, n], ai = 1

n . For specific applications, as presented in Chapter 6, it is possible to
reweight this distribution.

Thus the mathematical notion of distance we need is a distance between probability measures. It is
possible to rely on divergences like Maximum Mean Discrepancies [Gretton 2012] or Csiszar divergences
[Csiszar 1975]. In this thesis, we focus on optimal transport to compare distributions. Optimal transport
can be seen as a generic method to lift a distance between two points to a distance between sets of points.
Unlike the methods mentioned previously, it considers geometric notions to compare probability measures.
It is thus natural that optimal transport was used in deep learning to measure the discrepancy between
probability measures. On the other hand, deep learning was also used to estimate the continuous setting
of optimal transport.

Optimal Transport for Deep Learning. The origin of optimal transport traces back to the 18th
century in the work of Gaspard Monge [Monge 1781]. While optimal transport has found numerous
applications in different areas of theoretical and applied mathematics [Santambrogio 2015,Villani 2009], it
has also found many successes in machine learning [Peyré 2019]. Among them, we can highlight its use in
domain adaptation, where it reached state-of-the-art results, either by transporting source data into the
target domain [Courty 2017a] or by aligning embeddings of domains [Damodaran 2018]. Furthermore
we can also mention its use as a loss function for multi-label classification [Frogner 2015], where optimal
transport was defined between labels and took into account the closeness of classes. Yet, the most famous
application of optimal transport in deep learning is probably in Generative Adversarial Networks (GANs),
where it was used as a loss function in the so-called Wasserstein GAN [Arjovsky 2017]. Following GANs,
an optimal transport variant of AutoEncoders has also been designed [Tolstikhin 2018]. We finish our
overview by mentioning the different applications in biology [Schiebinger 2019], astrophysics [Frisch 2002]
or signal processing [Kolouri 2017].

In order to understand its successes and to improve its performances in deep learning, researchers
studied several aspects of optimal transport. The first aspect is the statistical estimation of optimal
transport, as in deep learning we mostly deal with high dimensional data. Several research have been done
to study its convergence rate in population, known as sample complexity. The exact optimal transport case
was studied in [Dudley 1969,Weed 2019] and the entropic-regularized OT case in [Genevay 2019,Mena 2019].
On the other hand, the computational complexity of optimal transport makes it prohibitive to use on
large scale datasets. Thus, a lot of research has been done to accelerate the computation of optimal
transport. Using an entropic regularization, optimal transport can be efficiently computed on GPUs with
the Sinkhorn algorithm [Cuturi 2013]. Furthermore, the algorithmic complexity of the Sinkhorn algorithm
was provided in [Altschuler 2017]. Other strategies based on a minibatch approximation were developed
in order to reduce the computational complexity [Genevay 2018,Damodaran 2018,Salimans 2018], but a
rigorous formalism was lacking.

On another note, variants of optimal transport has found numerous applications. For example, the
Gromov-Wasserstein distance allows to compare probability measures which lie in different metric spaces.
It has been applied in generative modelling [Mémoli 2011,Bunne 2019] or graphs [Vayer 2019a]. Relaxed
marginal variants of optimal transport have been used in many applications to make the transport robust
to outliers [Chapel 2020,Balaji 2020].
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Deep Learning for Optimal Transport. Deep learning can be used to approximate the continuous
formulation of optimal transport. As the probability measures are unknown in many applications, we rely
on empirical estimations of these measures. Thus we can only estimate a discrete optimal transport cost.
The dual potential of optimal transport can be approximated with a neural network, as done in [Ar-
jovsky 2017], or we can also use a neural network to approximate a mapping between domains [Seguy 2018].

The purpose of this thesis is to bring new knowledge on:

• How can optimal transport be used in deep learning for new applications ?

• Do optimal transport approximations used in deep learning still define a transport problem ?

1.2 Contributions of the thesis
This thesis, started in November 2018, makes some contributions on the use of optimal transport in deep
learning. The different contributions can be divided in two distinct parts. In the first part, we develop the
use of optimal transport as a loss function for deep learning.

• In the initial work [Fatras 2021a], we study the label noise problem. It corresponds to a supervised
learning setting where a proportion of labels are corrupted, which hurts generalization of deep neural
networks [Zhang 2017]. To solve this problem, we propose to use optimal transport, between labels,
as a loss function in the well known perturbation-based regularization, the Virtual Adversarial
Training (VAT) [Miyato 2018a]. VAT promotes a uniform local prediction of the classifier by
penalizing large local changes in the classification. The penalization is "isotropic" between all classes,
which might not be optimal when two classes are similar. Incorporating optimal transport in VAT
allows us to modulate the regularization strength with respect to the semantic similarity of classes.
Intuitively, we want to have complex classifier boundaries for classes which are similar to each other
and smooth boundaries for classes which are not. This behaviour is encouraged with well-chosen
new ground costs as discussed in Chapter 5.

• In a second work, we use optimal transport to generate samples which are misclassified for a
given classifier [Burnel 2021]. We rely on WGAN, an optimal transport variant of generative
adversarial networks [Goodfellow 2014b], which has been used successfully to generate highly
realistic data [Arjovsky 2017,Gulrajani 2017]. Given the classifier and training data, we develop
several weighting strategies to create new probability measures for training data, where misclassified
data receive bigger weights than correctly classified data. Then, we feed the new probability measure
to the WGAN in order to generate misclassified data.

The publications associated to these contributions are gathered in the following list:

• [Burnel 2021] Jean-Christophe Burnel, Kilian Fatras, Rémi Flamary and Nicolas Courty. Generating
natural adversarial Remote Sensing Images. In: IEEE Transactions on Geoscience and Remote
Sensing (TGRS), 2021.

• [Fatras 2021a] Kilian Fatras, Bharath Damodaran, Sylvain Lobry, Rémi Flamary, Devis Tuia and
Nicolas Courty. Wasserstein Adversarial Regularization on label noise. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2021.
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• [Burnel 2020] Jean-Christophe Burnel, Kilian Fatras, Nicolas Courty. Generating natural adversarial
hyperspectral examples with a modified Wasserstein GAN. In: C&ESAR 2020.

In the second part, we study how a usual and successful deep learning approximation can lead to open
theoretical questions in optimal transport. In order to reduce the computational complexity in many deep
learning applications, the loss function is computed between minibatches of data, drawn uniformly at
random. The deep neural network is then trained with SGD. The minibatch strategy has also been used
with optimal transport and showed impressive results [Genevay 2018,Muzellec 2020,Damodaran 2018].
However, computing optimal transport between minibatches of data does not correspond to computing
optimal transport between the full input measures. Thus we present a theoretical study of the optimal
transport minibatch approximation.

• In our works [Fatras 2020b,Fatras 2021c], we first provide a rigorous formalism of the minibatch
approximation. We build unbiased empirical estimators which respect the marginals of input
measures. We also provide a closed-form solution when data lie in 1D, which illustrates the effect
of the minibatch approximation on the transport plan, and we empirically show that minibatch
optimal transport creates non-optimal connections. We then propose a new loss function, based on
minibatch OT, to correct some loss of distance properties, due to the minibatch approximation. We
then theoretically study the statistical and optimization properties of minibatch optimal transport,
to make a first step in understanding its successes in deep learning.

• In a successive work, we also study some limits of the minibatch approximation [Fatras 2021b]. We
empirically show that the non-optimal connections can harm performances of neural networks on
specific applications. These connections are consequences of the minibatch sampling and the marginal
constraints. Indeed, at the minibatch level, the sampling can create outliers which are transported.
To mitigate this effect, we propose to use a relaxed marginal OT variant, called Unbalanced Optimal
Transport (UOT), at the minibatch level. We then show on different experiments that our method
successfully outperforms minibatch OT.

These contributions have led to several publications which are gathered in the list below:

• [Fatras 2021b] Kilian Fatras, Thibault Séjourné, Nicolas Courty and Rémi Flamary. Unbalanced
minibatch Optimal Transport; applications to Domain Adaptation. In: International Conference on
Machine Learning (ICML), 2021.

• [Fatras 2021c] Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval and
Nicolas Courty. In: arXiv:2101.01792 (Under Review)

• [Fatras 2020b] Kilian Fatras, Younes Zine, Rémi Flamary, Rémi Gribonval and Nicolas Courty.
Learning with minibatch Wasserstein: asymptotic and gradient properties. In: the 23rd International
Conference on Artificial Intelligence and Statistics (AISTATS), 2020.

• [Fatras 2020a] Kilian Fatras, Younes Zine, Rémi Flamary, Rémi Gribonval and Nicolas Courty.
Divergence Wasserstein par lots. In: 52èmes Journées de Statistiques de la Société Française de
Statistique.

During his PhD, the author also contributed to the Python Optimal Transport open-source library
which was acknowledged by the community through a publication. Finally, he also had a collaboration
with Fabian Pedregosa on stochastic optimization algorithms for complex penalties.
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• [Flamary 2021] Rémi Flamary, et al. POT: Python Optimal Transport. In: Journal of Machine
Learning Research (JMLR) - Open Source Software, 2021.

• [Pedregosa 2019] Fabian Pedregosa, Kilian Fatras and Mattia Casotto. Proximal Splitting Meets
Variance Reduction. In: the 22nd International Conference on Artificial Intelligence and Statistics
(AISTATS), 2019.

In the next section, we provide a detailed presentation of the different parts and chapters constituting
this thesis.

1.3 Organization of the manuscript
The thesis is divided in three parts corresponding to the different contributions made by the author. The
first part reviews the basic concepts of numerical optimal transport and its use in deep learning. The
second part discusses the first contributions on optimal transport as a loss function in deep learning.
After a short introduction about adversarial examples, we present our perturbation-based regularization,
coupled with optimal transport, for label noise problems. We then present our reweighting strategies of
empirical distributions in order to generate data which are misclassified by a given classifier. Finally, the
third and final part is focused on studying the minibatch approximation of optimal transport. We provide
a rigorous formalism of this approximation and then, empirically study some of its limits. We now detail
the organization of the manuscript.

Chapter 2 is written to bring basic mathematical and numerical knowledge of optimal transport to
the reader. It presents the fundamental concepts behind the Kantorovich formulation as well as different
variants used in this manuscript. Among all the different variants, we give a particular focus on entropic-
regularized optimal transport, unbalanced optimal transport and the Gromov-Wasserstein distance. We
also present basic solvers of specific optimal transport variants. A reader familiar with the concepts of
numerical optimal transport may skip this part, although it defines crucial notations that will be used
along the thesis.

Chapter 3 reviews the use of optimal transport as a loss function in deep learning. More specifically,
it is split in two parts. The first part gathers the different classification problems such as supervised
learning, semi-supervised learning, learning with label noise and domain adaptation. We then review
the literature on classification with an optimal transport loss. The second part is dedicated to study
generative modelling problems with optimal transport. We first discuss the standard generative model
methods and then how optimal transport has been used to improve these models. A reader familiar with
standard deep learning applications might skip this chapter but it gathers basic concepts and algorithms
that will be used in the different experiments presented in this manuscript.

Chapter 4 leads us to the second part of this manuscript. It introduces the concept of adversarial
examples in deep learning. We give a general definition and the different basic strategies to generate such
examples. We then explain how these adversarial examples can attack a pre-trained classifier and the
different concepts associated to these attacks. Finally, we show how these adversarial examples can be
used to define a new training algorithm, called Virtual Adversarial Training (VAT), for semi-supervised
problems. This algorithm promotes a uniform prediction of the classification around each input. It does
so by penalizing large changes in the classification.
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Chapter 5 presents the first contribution of this manuscript. It studies the classification problem of
learning with noisy labels. It is a setting where a fraction of the labels are corrupted. Based on the Virtual
Adversarial Training, we use an optimal transport regularization to force the neural network to smoothen
its decision boundary between classes that are very different from each other, as VAT does. However,
optimal transport allows us to keep complex boundaries between classes close to each other. We then
evaluate our method on standard and real-world label noise benchmarks.

Chapter 6 aims at introducing a new reweighted empirical distribution in order to generate data which
are misclassified by a pre-trained classifier. After defining several strategies to reweight the different
samples, we empirically design a new empirical distribution based on a softmax function. We then use a
generative model to generate misclassified data. To show the relevance of this approach, our reweighted
distribution is applied on real-world remote sensing data to fool pre-trained classifiers.

Chapter 7 opens the third and final part of this manuscript. We present the minibatch approximation
of optimal transport, which is studied theoretically and empirically in this third part. In order to study
this approximation theoretically, we review more advanced statistical and optimization results of optimal
transport. We introduce the Clarke generalized gradients, which define a notion of regularity for locally
Lipschitz functions [Clarke 1990]. We finish with the review of U-statistics [Hoeffding 1948,Hoeffding 1963]
which arises in the sampling formalism of minibatches.

Chapter 8 is dedicated to define a rigorous formalism of minibatch optimal transport. We start by
defining a formalism for uniform empirical measures and illustrate the consequences on the transport plan.
We also highlight a closed-form formula when data lie in 1D. Next, we define a general formalism for
any discrete distribution. Afterwards, we review the metric properties of minibatch optimal transport
which leads us to define a new loss function to correct some loss of metric properties. We also study
the positivness of this loss function. We then present deviation bounds and optimization properties for
different hypotheses on probability measures. We finish with extensive experiments in generative modelling
and color transfer.

Chapter 9 closes the contributions of the manuscript. We discuss the different limits of minibatch
optimal transport due to the minibatch sampling and the OT formulation. As OT has marginal constraints,
it is sensitive to outlier data and the minibatch sampling artificially creates such outliers. To mitigate
these limits, we propose to replace optimal transport by a variant with relaxed marginals known as the
Unbalanced Optimal Transport. We then empirically show that unbalanced minibatch optimal transport
outperforms minibatch optimal transport on gradient flows and domain adaptation experiments.

Chapter 10 concludes this thesis and reviews the potential directions for future works on the interactions
of optimal transport and deep learning.

Appendix A gathers the proof of the different results from the precedent chapters.
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In this chapter, we rigorously define the notion of optimal transport. We first detail the probability
measure framework which is ubiquitous in machine learning. We then review the optimal transport
definition, its metric properties and its computational and memory complexities. Afterwards, we introduce
the entropic-regularized optimal transport and review the benefits and consequences of this formulation.
The presentation of two optimal transport variants will close this chapter.

2.1 Motivations: dealing with measures
Machine Learning (ML) models aim at learning the best models that achieve a given goal from training
data. The training data depend on the problem considered. In computer vision, data are images or videos,
while in natural language processing, data are sentences or texts. In this manuscript, we mostly consider
the area of computer vision and we focus on images in particular. Specifically, the images represent daily
objects, such as cars or planes, human faces or remote sensing images. The tasks we want the models to
achieve can be split in two categories. The first category is a classification task, where we want a model
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to predict the class of a given image. The second category is image generation, where we want a model
to generate images which would look like training data. Machine learning models are trained to achieve
these desired tasks by minimizing a certain quantity. These quantities are estimated using probability
distributions, which is a framework that allows to represent a set of data as one mathematical object. In
this section, we define formally the probability distributions in the discrete and continuous cases. We
then show how it appears in the two machine learning problems mentioned above. We finish this section
by discussing how probability distributions are estimated in practice when they are unknown.

Definitions of probability distributions. We now give a formal definition of probability measures
and we start with the discrete case. We consider n samples from the data space X as {x1, · · · ,xn}. Let
Σn denote the probability simplex of order n, i.e., the set of positive vectors which sum to 1, namely

Σn = {a ∈ R+ :
n∑
i=1

ai = 1}. (2.1)

In order to avoid degeneracy issues, we suppose that all ai > 0. A discrete probability measure is defined
as follows.

Definition 1. Given a tuple of weights a ∈ Σn and locations {x1, · · · ,xn} ∈ X , a discrete probability
measure reads

α =
n∑
i=1

aiδxi , (2.2)

Where (δxi)i∈[1,n] is a Dirac at the position xi. The set of Diracs {δx1 , · · · , δxn} is called the support of
the measure α.

The probability measure framework also allows to handle the case where we have an infinite number
of samples, that we refer to the continuous case. This occurs in generative modelling where we can
generate an infinite number of data. In this setting, the probability measure definition needs to be adapted.
Consider the set of Radon measures M(X ) on the data space X which is equipped with a distance d.
We denote the set of probability measures on X asM1

+(X ). We say that α ∈ M1
+(X ) is a probability

measure if it can be integrated against any continuous function f on X with compact support, formally
ˆ
X
f(x)dα(x) ∈ R and

ˆ
X
dα(x) = 1.

We now give concrete examples on why the measure framework is adapted for the tasks we consider.

Motivating examples. In generative modelling, the purpose is to generate training-like data. A
parametrized model denoted βθ where θ is the parametrization vector, i.e., θ 7→ βθ, is designed to generate
images. To make them look like training data, we want to minimize the distance between the generated
data and the training data with respect to parameters θ. We achieve this goal by minimizing the distance
between the corresponding probability measures of generated data βθ and training data α. In order to
compute the dissimilarities between measures, it is common to rely on a contrast function or divergence
L :M1

+(X )×M1
+(X )→ R+. Thus, the goal is to find the optimal θ∗ which minimizes the distance L

between the measures βθ and α, i.e. θ∗ = argminθ L(α, βθ).
The purpose of classification is to predict the class of a given image. In the supervised learning setting,

we have access to an image xi and its label yi, which describes the class of the given image P (yi|x = xi).
The label is a one-hot vector, where all coordinates are set to 0 except the one which represents the class
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of x, which is set to 1. It is thus a probability vector, i.e., yi ∈ ΣnC where nC is the number of classes.
To classify data, we wish to learn a function f : X 7→ ΣnC which describes the relationship between a
sample x and its label y. The function is learnt by minimizing the errors between its predictions and the
correct labels, which are probability distributions with the same support. The error takes the form of a
distance between these probability measures. It is typically calculated with the cross-entropy.

Definition 2. Let a and b be two probability vectors. Then the cross-entropy loss reads

LCE(a,b) = −
n∑
i=1

ai log(bi). (2.3)

We give a more detailed description of supervised learning in Section 3.1.1 as well as some of its variants.

Empirical estimation. Ideally, machine learning models would be trained on the true probability
distribution of data α. However in practice, the distribution α is unknown and we have access to
independent and identically distributed (i.i.d.) random samples drawn from α instead. We can thus
estimate the measure α using a discrete probability measure, which support is the set of empirical samples,
and the weights a ∈ Σn are uniform. Formally, we define the empirical measure of α as αn = 1

n

∑n
i=1 δxi .

It is known that αn converges to α as the number of data n grows to infinity and we report to Section
7.2.1 for a longer discussion.

For instance in the supervised learning setting of classification, the data and their labels are sampled
from an unknown joint measure PX×Y. So its empirical counter-part is defined as

αn = 1
n

n∑
i=1

δ(xi,yi). (2.4)

where δ(xi,yi) is a Dirac on the joint space of data and labels X × Y. Hence approximating the real joint
measure PX×Y is an important problem in order to get the best possible function with minimum prediction
errors.

As probability measures are at the heart of many machine learning problems, finding a suitable distance
to measure the discrepancy between them is a fundamental problem. Optimal transport has become a key
tool to achieve this goal and is the topic of the next sections.

2.2 Kantorovich formulation of Optimal Transport
We start by giving an intuition about optimal transport, which measures the distance between two
probability measures by taking into account the data space geometry. Intuitively it minimizes the
displacement cost of a measure to another one. In this section, we introduce the formal optimal transport
framework between arbitrary measures. We review the primal formulation, which is a linear program, and
then we review its corresponding dual formulation. Afterwards, we study the metric properties of optimal
transport. Next, we illustrate the particular case when data lie in one dimension, where a closed-form
solution of optimal transport is available. Finally, we discuss the computational and memory complexities
of solving the OT problem.

2.2.1 Primal and dual Optimal Transport formulations

We start by defining the primal formulation in the case of two continuous measures. Optimal transport
measures a distance between two probability measures (α, β) ∈M1

+(X )×M1
+(Y) by considering a ground
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cost c : X ×Y 7→ R+ between the spaces X and Y . It looks for a probabilistic coupling to move a measure
to the other. A probabilistic coupling π is a joint probability measure with marginals α and β, formally:

Definition 3. Let α ∈M1
+(X ), β ∈M1

+(Y) be two probability measures. A probabilistic coupling π is a
joint probability such that its marginals are equal to α and β. We denote π ∈ U(α, β) with

U(α, β) =
{
π ∈M1

+(X ,Y) : PX#π = α,PY#π = β
}
,

where PX#π (resp. PY#π) is the marginalization of π over X (resp. Y). PX (resp. PY) denotes the
projection over the space X (resp. Y), and # denotes the pushforward operator.

The pushforward operator can be defined as follows.

Definition 4. The pushforward operator for a continuous map T : X 7→ Y and for any measurable set
B ⊂ Y is defined as: β(B) = α

(
{x ∈ X : T (x) ∈ B}

)
.

Note that the notion of pushforward operator is important to formalize the image generation problem.
We are now ready to state the Kantorovich formulation of optimal transport between continuous measures.

Definition 5. Let α ∈M1
+(X ), β ∈M1

+(Y) be two probability measures and π a probabilistic coupling.
The Kantorovich optimal transport formulation between probability distributions α and β is defined as

L(α, β, c) = min
π∈U(α,β)

ˆ
X×Y

c(x,y)dπ(x,y). (2.5)

It is called the Kantorovich problem [Kantorovich 1942] and we refer in this thesis to this problem as the
continuous optimal transport formulation. It can be defined between measures of the same mass, but
as our applications are machine learning tasks, measures are mostly probability measures. The ground
cost represents the space geometry and influences the optimal connections between measures. Solving
some machine learning problems requires to design a specific ground cost as it has been done in domain
adaptation [Courty 2017b] or generative modelling [Genevay 2018]. To assure the existence of optimal
transport plans, we make the following hypotheses: unless said otherwise, X and Y are subsets of Rd,
where d is the space dimension. Regarding the ground cost, it can only be a positive and semi-continuous
function on X × Y but for the sake of simplicity, we suppose that it is a positive continuous function on
the space X × Y. We refer the reader to [Santambrogio 2015, Chapter 1] for a detailed review about the
existence of optimal couplings for the Kantorovich problem. Note that the use of "min" instead of "inf" is
justified in the formulation as the probabilistic coupling π = α⊗ β ∈ U(α, β) is always admissible. We
can also define the optimal transport problem for discrete measures.

Remark 1. Let X = {x1, · · · ,xn} and Y = {y1, · · · ,yn} be two data n-tuples. Let α =
∑n
i=1 aiδxi and

β =
∑n
i=1 biδyi be two discrete probability measures with weights a and b respectively. Let C ∈ Rn×n+

be a ground cost matrix between the support of α and β, i.e., positions X and Y , which elements are
Ci,j = c(xi,yj),∀(i, j) ∈ JnK2. The Kantorovich optimal transport discrete formulation between probability
distributions α and β is defined as

L(α, β, c) = L(a,b,C) = min
Π∈U(a,b)

〈Π,C〉F , (2.6)

where 〈·, ·〉F denotes the Frobenious product and where U(a,b) =
{

Π ∈ Rn×n+ : Π1n = a,ΠT1n = b
}
.

When we do not deal with sum of Diracs but with a given ground cost C and random probability
vectors a and b, we can also define an optimal transport problem L(a,b,C). The continuous and discrete
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Continuous Optimal transport
Source
Target

Discrete Optimal Transport
Source samples
Target samples

Figure 2.1: Optimal transport illustration between 2D measures. The left image represents the continuous optimal
transport setting. The right image represents the discrete optimal transport setting. The black lines represent the
optimal connections.

cases are illustrated in Figure 2.1. The last case of interest is the semidiscrete case, where one of the
measures is discrete while the other is continuous. We report to the next section for a detailed discussion
about this particular case.

When using optimal transport to compare probability measures with one measure being parametrized
by a vector θ, i.e., θ∗ = argminθ L(α, βθ, c), the corresponding estimator is usually found in the literature
under the name of Minimum Kantorovich Estimator [Bassetti 2006,Peyré 2019].

Kantorovich duality The Kantorovich problem (2.5) is the minimization of a linear problem with
respect to the transport plan π. As such it is a constrained convex minimization problem. It can
be naturally transformed in a dual problem called Kantorovich dual, which is a constrained concave
maximization problem. We start this section by defining the c-transform which is at the heart of many
duality theorems.

Definition 6 (c-transform). Let R = R ∪ {±∞}, X ,Y be subsets of Rd and f : X → R be a function.
We define its c-transform as the function f c : Y → R:

f c(y) = inf
x∈X

c(x,y)− f(x) (2.7)

and the c̄-transform of a function g : Y → R as the function gc̄ : X → R:

gc̄(x) = inf
y∈Y

c(x,y)− g(y). (2.8)

Fonctions that can be written as f c or gc̄ are called respectively c-concave or c̄-concave functions.

One important property of the c-transform is that ∀(x,y) ∈ X × Y, f(x) + f c(y) ≤ c(x,y). The
c-transform is a generalization of Fenchel-Legendre conjugate, where the Fenchel-Legendre conjugate of a
function G is defined as:

∀y ∈ Rd, F (y) = sup
x∈Rd
〈x,y〉 −G(x).

It is a convex function for any function G. The following fundamental proposition makes a connections
between the continuous primal and dual formulations.

Proposition 1 (Dual for arbitrary measures). The Kantorovich problem admits the dual

L(α, β, c) = sup
(f,g)∈R(c)

ˆ
X
f(x)dα(x) +

ˆ
Y
g(y)dβ(y), (2.9)
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where the set of admissible dual potentials is :

R(c) = {(f, g) ∈ C(X )× C(Y) : ∀(x,y) ∈ X × Y, f(x) + g(y) ≤ c(x,y)}.

The continuous functions f, g are called the Kantorovich potentials. The following remark highlights
the dual formulation in case of discrete measures.

Remark 2 (Dual for discrete measures). The dual optimal transport problem in the discrete setting is

L(a,b, C) = max
(f ,g)∈R(C)

〈f ,a〉+ 〈g,b〉, (2.10)

where the set of admissible dual potentials is :

R(C) = {(f , g) ∈ Rn × Rn : ∀i, j ∈ JnK2,fi + gj ≤ Ci,j}.

The equality between discrete formulations holds thanks to the strong duality for linear programs
[Bertsimas 1997] and the proof can be found in [Peyré 2019, Section 2.5].

Kantorovich - Rubinstein W1 formulation Using the c-transform, one can make the dual problem
dependant on only one dual potential. It is useful in the context of semidiscrete optimal transport, where
one of the measure is discrete while the other is continuous. Formally, we have:

L(α, β, c) = sup
(f,g)∈R(c)

ˆ
X
f(x)dα(x) +

ˆ
Y
g(y)dβ(y),

= sup
f∈L1(α)

ˆ
X
f(x)dα(x) +

ˆ
Y
f c(y)dβ(y),

= sup
g∈L1(β)

ˆ
X
gc̄(x)dα(x) +

ˆ
Y
g(y)dβ(y). (2.11)

This formulation based on c-transform leads to another appealing formulation called the Kantorovich -
Rubinstein W1 dual formulation. When we transport two measures in the metric space (X , d) with the
cost c = d, the dual formulation can be rewritten as a supremum over 1-Lipschitz dual potential. A full
discussion can be found in [Peyré 2019, Chapter 6.]. We have then:

L(α, β, d) = sup
g∈Lip1(X )

ˆ
X
g(x)dα(x)−

ˆ
X
g(y)dβ(y) (2.12)

This formulation is at the heart of the Wasserstein GAN [Arjovsky 2017] used for generative modeling,
where the ground cost is the usual Euclidean distance. Note that the cost appears in the Lipschitz property.
After defining the primal and dual formulations, we state the optimal transport metric properties and its
assumptions.

2.2.2 Metric Properties

Optimal transport is a metric between measures when certain properties are satisfied by the ground cost.
It can be seen as a canonical method to lift a ground distance between points to a distance between
measures. We first recall the metric definition.

Definition 7 (Metric definition). A metric on a space Z is a function f : Z × Z 7→ R+ which verifies
the following axioms ∀x,y, z ∈ Z:
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i d(x,y) = 0 ⇐⇒ x = y (separability axiom)

ii d(x,y) = d(y,x) (symmetry)

iii d(x,y) ≤ d(x, z) + d(z,y) (triangle inequality)

When the metric space is a space of measures, the elements x,y, z are measures and the axioms remain
the same. We now state under what conditions the optimal transport cost is a metric.

Theorem 2.2.1. We assume X = Y and that it is equipped with a distance denoted d. Let p ∈ [1,+∞[,
then for the ground cost c = dp, the optimal transport cost

Wp(α, β, d) =
(
L(α, β, cp)

)1/p (2.13)

is indeed a metric, called the p-Wasserstein distance, between probability measures α and β.

In addition to these metric properties, some statistical properties are discussed in Section 7.2. The metric
properties of optimal transport make it a good candidate for comparing probability measures in ML. After
defining the formalism and the optimal transport metric properties, we now give a specific case where the
optimal transport has a closed-form solution.

2.2.3 1D data closed-form

The optimal transport problem does not have a closed-form solution in general. However when data
lie on the real line R, a closed-form solution can be expressed for general probability measures on R.
The 1D closed-form is well known in the OT literature and is at the heart of an OT variant called the
sliced Wasserstein distance [Rabin 2012,Bonnotte 2013], which we detail in the next paragraph. The
closed-form solution of linear optimal transport is given in the next result and discussed in more details
in [Santambrogio 2015, Theorem 2.9] and [Peyré 2019, Remark 2.30].

Theorem 2.2.2 (Closed-form expression on the real-line). Assume that X = R, α, β ∈M1
+(R). Let

Fα be the cumulative distribution function:

∀t ∈ R, Fα(t) = α(]−∞, t]) (2.14)

and F−1
α its pseudo inverse, namely:

∀x ∈ [0, 1], F−1
α (x) = inf{t ∈ R |Fα(t) ≥ x}. (2.15)

If c(x, y) = h(y − x) where h is strictly convex then the Kantorovich problem (2.5) has a unique
optimal transport plan given by π∗ = (F−1

α × F−1
β )#L[0,1] where L[0,1] is the Lebesgue measure

restricted to [0, 1].
Moreover if α is atomless π∗ is supported on the map T (x) = F−1

β (Fα(x)), i.e. π∗ = (id× T )#α.
If h is only convex then the optimal transport plan π∗ is still optimal but not necessarily unique.

Remark 3. Suppose the probability measures α and β are discrete uniform measures with the same
number of Diracs, i.e., α = 1

n

∑n
i=1 δxi , β = 1

n

∑n
i=1 δyi . Then if the measure supports (xi)i∈JnK and

(yi)i∈JnK are respectively sorted on R, the identity scaled by a uniform weight is an optimal transport plan.
This case is illustrated in the Figure 2.2.
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Figure 2.2: Illustration of OT between 1D uniform probability measures with sorted supports. The number of
samples is set to 10. The optimal transport plan is the identity scaled by 1

n
.

In the case of non uniform weights and different number of atoms α =
∑n1
i=1 aiδxi , β =

∑n2
i=1 biδyi , the

1D closed-form sends as much mass it can between x1 and y1 and then add the remaining mass to y2.
The operation is repeated until there is no mass left.

As for two discrete uniform probability measures with the same number of atoms and sorted supports,
the optimal transport plan is a scaled identity matrix, it can be solved by a sort algorithm in O(n log(n))
operations.

Sliced Wasserstein distance: taking advantage of the 1D closed-form This appealing property
led to the creation of the so-called sliced Wasserstein distance. It consists in averaging the Wasserstein
distance between projected data in 1D over all the directions in space. Formally it is defined as follows

SWp (µf , µg, c)p =
ˆ
Sd−1

Wp (µfθ , µgθ , c)
p
dθ, (2.16)

where Sd−1 is the sphere of dimension d and fθ, gθ the projected data in 1D. In practice, it is estimated
with a Monte-Carlo method. It was first introduce in [Rabin 2012,Bonnotte 2013] and then used in the
context of generative models [Kolouri 2016,Kolouri 2018,Kolouri 2019a,Liutkus 2019]. However in the
general case, the computational complexity of OT is much higher than O(n log(n)) and is discussed in the
next section.

2.2.4 Computational and memory complexities

For discrete probability measures, the Kantorovich formulation (2.6) is a linear program and can be
solved using standard linear program solvers [Dantzig 1997]. One can then use the network simplex
algorithm to solve the Kantorovich dual formulation. This algorithm has a computational complexity
of O(n3 log(n)) where n is the number of samples in the input measures. We report interested readers
to [Peyré 2019, section 3.] for a more detailed discussion on how to solve the OT linear program. In a more
simple case, we can make a connection between the Kantorovich formulation and the assignment problem.

Assignment problem We consider the special case of two discrete probability measures with the same
number of atoms. For any permutation σ ∈ Perm(n), we write the corresponding transport plan Πσ which
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is equal to
(
Πσ

)
i,j

=
{

1
n if j = σ(i)
0 otherwise

. In this case, minimizing the assignment problem reads

minσ〈Πσ, C〉F = minσ
1
n

∑
i

Ci,σi .

While this formulation is greater or equal than the Kantorovich problem, one can show that for uniform
weights, the two formulations are equal as proved in [Peyré 2019, Proposition 2.1]. The assignment
problem can be solved using the Auction algorithm in O(n3).

Memory complexity The discrete primal formulation of optimal transport requires to store the ground
cost C and the optimal transport plan. Thus its memory complexity is of order O(n2). Regarding the
dual formulation, it could be computed by storing the data in memory to compute the constraints, as well
as the dual potentials and the probability vectors. Thus its memory complexity is of order O(nd) which is
smaller than the primal formulation for big data scenario.

In this section, we defined the Kantorovich problem and reviewed its primal and dual formulations. We
then discussed the different cases it defines a metric between probability distributions. Finally, we provided
a closed-form solution when data lie in 1D and discussed its computational and memory complexities. In
the next section, we regularize the Kantorovich problem with an entropic regularization.

2.3 Entropic regularization: formulation and practical interest
In this section, we discuss the introduction of the entropic-regularized optimal transport. It is defined
by adding an entropic regularization penalty on the coupling to the original Kantorovich problem. This
regularized loss has several important advantages with respect to original OT. For instance, it can be
efficiently computed on GPUs using a 5 line algorithm. Furthermore, the resulting formulation is smooth
with respect to input histogram weights and to the ground cost. Also, it can be differentiated using
automatic differentiation. We present the entropic-regularized optimal transport definition, its equivalent
dual formulation, the available solvers and the consequences on the optimal solutions. We finish by
introducing a divergence based on entropic-regularized OT.

2.3.1 Definition and basic properties

The Kantorovich formulation has several interests but has also some downsides. The first problem is the non
uniqueness of the transport plan which makes OT non differentiable w.r.t. the ground cost c, as discussed
in Section 7.2.2. The second is its cubical computational complexity. Using an entropic regularization on
the coupling helps to mitigate these two problems. This idea was first used in [Schrodinger 1931] and it
was used for OT in [Wilson 1969]. It was then reintroduced recently in the OT literature in [Cuturi 2013]
with the rise of GPUs. The entropic-regularized optimal transport problem between continuous probability
measures with a ground cost c is defined as

Lε(α, β, c) = min
π∈U(α,β)

ˆ

X×Y

c(x,y)dπ(x,y) + εH(π|ξ), (2.17)

with H(π|ξ) =
ˆ
X×Y

log
(

dπ(x,y)
dα(x)dβ(y)

)
dπ(x,y)−

ˆ
X×Y

dπ(x,y) +
ˆ
X×Y

dα(x)dβ(y),

where ξ = α⊗ β and ε ≥ 0 is the regularization coefficient. We denote it as the entropic OT loss.
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Remark 4. In the discrete measures case the problem becomes:

Lε(a,b,C) = min
Π∈U(a,b)

〈Π,C〉+ εH(Π|a ⊗ b),

withH(Π|a ⊗ b) =
∑
i,j

Πi,j log( Πi,j

aibj
)−Πi,j + aibj . (2.18)

Adding this penalty leads to several interesting outcomes. First of all, the problem is now strongly
convex w.r.t. the coupling π and remains linear in the cost c. Indeed for discrete measures, if one computes
the Hessian of the Kullback-Leibler divergence w.r.t. the transport plan, one gets ∂2H

∂Π2
i,j

(Π|ξ) = 1/Πi,j ,
which is a matrix with positive entries. Hence the problem is now strongly convex and as such, has a
unique solution. Regarding the dual of the entropic-regularized OT problem we have the following results.

Proposition 2. The dual of entropic-regularized OT reads

Lε(α, β, c) = sup
(f,g)∈C(X )×C(Y)

ˆ
X
f(x)dα(x) +

ˆ
Y
g(y)dβ(y)

− ε
ˆ
X×Y

exp(−c(x,y) + f(x) + g(y)
ε

)dα(x)dβ(y), (2.19)

Following the same logic as before, we can express the dual formulation between discrete probability
measures.

Remark 5 (Dual for discrete measures).

Lε(a,b,C) = max
(f ,g)∈Rn×Rn

〈f ,a〉+ 〈g,b〉 − ε〈exp(f
ε

), exp(−C
ε

) exp(g
ε

)〉. (2.20)

The proof of this proposition can be found in [Peyré 2019, Proposition 4.4]. The equality between
the primal and the dual formulations is proven by the general duality theorem (Karush–Kuhn–Tucker
conditions and Lagrangian formulation, see [Bertsekas 1997, Chapter 5]). Furthermore, expressing the
Lagrangian of the dual formulation leads to the expression of the optimal transport plan.

Proposition 3. The optimal transport plan of the discrete entropic OT has the form:

Πi,j = e
fi
ε e
−Ci,j
ε e

gj
ε = uiKi,jvj , (2.21)

where K = e−
C
ε .

See [Peyré 2019, Proposition 4.3] for more details. The form of the optimal solution can be further
simplified. It also highlights a simple algorithm to solve the entropic-regularized OT problem, which is
the topic of the next subsection.

2.3.2 Solving entropic Optimal Transport

In this section, we detail the possible solvers of entropic-regularized optimal transport. We first detail
why the Sinkhorn algorithm can be used in this context and then we focus on stochastic solvers.

Sinkhorn algorithm The optimal transport plan of entropic-regularized OT has the matrix multi-
plication form Π = diag(u)K diag(v), thanks to Proposition 3. Furthermore, the transport plan needs
to verify the marginal constraints, thus it reads Π1n = diag(u)K diag(v)1n = u � Kv = a. The
marginal constraint on b equivalently gives Π>1n = v �K>u1n = b. This problem is known in the
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Algorithm 1 Sinkhorn Algorithm
1: Inputs : histograms a and b, cost matrix C, regularization coefficient ε
2: K = exp(−C/ε)
3: Define at random (u,v) ∈ Rn+ × Rm+
4: while (u,v) did not converge do
5: u = a � (Kv)
6: v = b� (K>u)
7: end while
8: return u,v

numerical analysis community as the matrix scaling problem and it can be solved using the Sinkhorn
algorithm [Sinkhorn 1967]. The Sinkhorn algorithm is detailed in Algorithm 1 and it can be interpreted
as a block coordinate ascent on the dual problem. A practical feature of the Sinkhorn algorithm is that
it can be efficiently solved on GPUs as noted in [Cuturi 2013], allowing a fast parallel computation.
Regarding its complexities, let η = 4 log(n)

ε , then the Sinkhorn algorithm produces an optimal solution
Π∗ such that 〈C,Π∗〉F ≤ Lε(a,b, C) + η after O(‖C‖3∞ log(n)η−3) iterations [Altschuler 2017]. A full
discussion on the Sinkhorn algorithm with its analogies, convergence results and complexities can be found
in [Peyré 2019, section 4.].

The Sinkhorn algorithm has seen many variants published in the recent years. As numerical stability
appear for small regularization value ε, a stabilized version was developed in [Chizat 2018a] which is based
on log-sum-exp iterations and is mathematically equivalent to the original version. Several published
papers have focused on studying the Sinkhorn algorithm complexity [Altschuler 2017,Pham 2020]. To
accelerate the computation of the solution, one can rely on a greedy strategy [Altschuler 2017,Abid 2018],
or on reducing the problem by finding negligible components [Alaya 2019]. Other strategies such as
Bregman projection operators [Thibault 2017] or gradient descent acceleration [Dvurechensky 2018] are
possible. Regarding its use in machine learning, as the entropic formulation is a smooth formulation
w.r.t. the cost or the input histograms, a Sinkhorn AutoDiff formulation can be developed as done
in [Genevay 2018]. To speed up computations, they used a fixed number of Sinkhorn iterations. Finally,
the entropic formulation can also be solved using stochastic algorithms.

Stochastic solvers for entropic-regularized OT The entropic OT formulation can be expressed as
an expectation over data, allowing the use of stochastic algorithms to solve the OT problem. The idea is
to express the entropic-regularized OT formulation using the c-transform. Suppose ε > 0, then using the
c-transform, the dual OT program reads

sup
f,g∈C(Rd)×C(Rd)

E
x∼α,y∼β

[Fε(f(x), g(y))], (s-D)

sup
g∈C(Rd)

E
x∼α

[Gε(x, g)], (s-SD)

where Fε(f(x), g(y)) = f(x) + g(y) − εe
f(x)+g(y)−c(x,y)

ε and Gε(x, g) =
´
Y g(y)dβ(y) −

ε log(
´
e

1
ε (g(y)−c(x,y))dβ(y)) − ε. Those smoothed problems are called the smooth dual (s-D) and the

smooth semi-dual (s-SD) problems. The two problems are unconstrained maximization problems of an
expectation and the idea is to use Stochastic gradients descent [Robbins 1951a] (SGD) or reduced variance
stochastic (RVS) algorithms [Schmidt 2017a,Defazio 2014,Johnson 2013,Nguyen 2017] to compute their
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Figure 2.3: Time comparison of optimal transport variants between 2D measures with growing support. The figure
shows that the entropic-regularized OT with the Sinkhorn algorithm or the stochastic algorithms are faster to
compute than original OT for a large number of samples. We used the solvers from the POT library [Flamary 2021].

solution. These equations were first used in [Genevay 2016] and the authors compared the different
stochastic algorithms to compute the solutions. We first discuss the discrete case.

When both measures α =
∑n
i=1 aiδxi ,β =

∑m
j=1 bjδyj are discrete, the equations become:

max
α,β∈Rn×Rm

n,m∑
i=1,j=1

Fε(αi, βj)aibj , (s-Ddis)

max
β∈Rm

n∑
i=1

Gε(xi,β)ai. (s-SDdis)

The stochastic gradients computation complexity of (s-SDdis) is O(n). RVS algorithms can be used
to solve the (s-SDdis) problem and have a converge rate of O(t−1) but at the price of a full gradient
computation [Johnson 2013] or the storage of past stochastic gradients [Schmidt 2017a,Defazio 2014].
When the extra cost of RSV algorithms can not be handled, one can rely on SGD with a convergence rate
of O(t− 1

2 ). A time comparison between the computation of original OT and entropic-regularized OT with
the Sinkhorn algorithm or stochastic algorithms can be found in Figure 2.3. It shows that the stochastic
formulation is slower than the Sinkhorn algorithm or the network simplex algorithm for a small number
of data but faster in the Big Data regime. These poor performances in the small data regime might come
from a non efficient Python loop in the stochastic solvers from the POT library [Flamary 2021], which
would decrease the time performances. Regarding (s-Ddis), its stochastic gradient computation cost is
of order O(m2), where m is the minibatch size. It has been solved using directly stochastic gradients
between small minibatches in [Seguy 2018]. Due to this small gradient computation cost, it was proven to
converge faster than SGD on the (s-SDdis) formulation [Seguy 2018].

Now suppose that one of the measures is continuous, another particular advantage of the smooth
semi-dual formulation (s-SDdis) is that it can tackle the semi-discrete OT case, which is the formalism of
generative models. Unfortunately RVS algorithms can not be used anymore as one of the measures is
continuous and we need to rely on SGD. Thus this approach is not scalable in the Big Data regime.

Finally, the continuous OT case has also been studied in several works. [Genevay 2016] represented the
dual variables with kernel expansions, [Seguy 2018] parametrized the dual variables with a neural network.
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Figure 2.4: Optimal transport variants between 2D measures. For the entropic-regularized OT variants, the ε
coefficients are set to 0.05 and 0.5.

Stochastic solvers for exact OT In the context of unregularized OT, the W1 Kantorovich-Rubinstein
formulation could be used as done in [Arjovsky 2017]. The challenge of the W1 formulation is to ensure
that the potential is indeed 1-Lipschitz. The solutions are either based on weight clipping [Arjovsky 2017]
or making the gradient norm less or equal to 1 [Gulrajani 2017].

We have shown many desirable complexities of entropic-regularized OT. However, it is not the panacea
and we develop its limits in the next section.

2.3.3 Entropic bias: solution far from original Optimal Transport solution

Adding the entropic regularization leads to several advantages, but it also changes the original problem
and we discuss the consequences on the transported samples and the metric properties in this section.

The optimal transport plan of the entropic-regularized OT problem is not the plan with minimum
transport cost anymore. Thus, using the entropic regularization breaks the separability axiom of distances
and Lε(α, α, c) 6= 0. This is defined in the literature as the entropic bias [Feydy 2019]. The greater
the regularization coefficient ε is, the more uniform the transport plan gets as illustrated in Figure 2.4.
Thus the optimal barycentring mapping of the entropic-regularized OT is no longer the target measure
but a shrunk measure, whose support is smaller than the one of the target measure. The size of the
barycentric mapping support depends on the coefficient ε. We now formally state the limit properties of
entropic-regularized OT depending on the regularization parameter ε with the following proposition.

Proposition 4. When the regularization coefficient ε converges to 0, the entropic-regularized optimal
transport problem converges to the original optimal transport problem. Furthermore, when the regularization
coefficient converges to ∞, the transport plan converges to the product measure a ⊗ b, i.e.,

ε→ 0 =⇒ Lε(a,b, C)→ L(a,b, C), (2.22)
ε→∞ =⇒ Πε → a ⊗ b. (2.23)

The proof of the above proposition can be found in [Peyré 2019, Proposition 4.1] when the OT problem
is regularized with the entropy function. The case for the Kullback-Leibler regularization follows the same
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steps. To mitigate this issue and recover the target solution, a debiased loss has been introduced in the
literature and it is the topic of the next section.

Different OT regularization The regularization of optimal transport has several flavors. In this
section, we detail some other useful variants but which are out of the scope of this manuscript. In
domain adaptation, some well-chosen regularizations of optimal transport were designed to ensure a special
behaviour on connections and the transport plan. A lpl1 norm regularization was proposed in [Courty 2014]
in order to concentrate the transport information on elements of the same class. In [Courty 2017a], the
authors introduced a group-lasso regularization to promote the mass transfer from source data with
the same labels to a given target data. They also introduced a Laplacian regularization which aims at
preserving the data structure – approximated by a graph – during transport. Those problems were solved
using a general conditional gradient. A squared 2-norm and a group-lasso regularizations of optimal
transport were studied in [Blondel 2018], leading to sparse and group-sparse transportation plans contrary
to the entropic-regularized optimal transport plan.

2.3.4 Sinkhorn divergence, a debiased entropic Optimal Transport approach

Despite the appealing advantages of the entropic-regularized OT, the associated entropic bias might lead
to poor performances in practice [Feydy 2019]. To mitigate this issue, a debiased loss has been introduced,
called the Sinkhorn Divergence.

The idea is simple, if the entropic-regularized OT Lε(α, β, c) is not zero for ε > 0 and α = β, then we
just need to remove the non-zero bias for both measures α and β. The Sinkhorn Divergence is defined as
follows:

Sε(α, β, c) = Lε(α, β, c)− 1
2(Lε(α, α, c) + Lε(β, β, c)). (2.24)

The discrete case is straightforward by replacing the entropic-regularized OT terms by their discrete
counterparts. It is clear that we recover Sε(α, α, c) = 0 by construction of the loss. It can still be computed
with the same order of computational complexity as the entropic-regularized OT, by using the Sinkhorn
algorithm on each term for instance. The Sinkhorn divergence has been proven to interpolate between OT
and Maximum Mean Discrepancy (MMD). MMD are integral probability metrics which consist of the
integration of a positive kernel k over a Reproducing Kernel Hilbert Space (RKHS) X [Gretton 2012] and
they are defined as

‖α− β‖2k = Eα⊗α [k (x,x′)] + Eβ⊗β [k (y,y′)]− 2Eα⊗β [k(x,y)]. (2.25)

We have the following proposition regarding Sinkhorn divergence’s interpolation behaviour.

Proposition 5. Let α and β be probability measures and c a ground cost.

lim
ε→0

Sε(α, β, c) = L(α, β, c) and lim
ε→+∞

Sε(α, β, c) = 1
2‖α− β‖

2
−c. (2.26)

The proof of this proposition can be found in [Ramdas 2017]. The entropic-regularized OT is a positive
cost as the sum of two positive functions. But this might not be the case for the Sinkhorn Divergence
as we remove two positive terms. Fortunately, its has been proven in [Feydy 2019, Theorem 1] that the
Sinkhorn Divergence is a convex, smooth, positive loss function that metrizes the convergence in law. We
state their theorem.
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Theorem 2.3.1 (Theorem 1 [Feydy 2019].). Let X be a compact metric space with a Lipschitz
cost function c(x,y) that induces, for ε > 0, a positive universal kernel kε(x,y) = exp(−c(x,y)/ε).
Then, Sε defines a symmetric positive definite, smooth loss function that is convex in each of its
input variables. It also metrizes the convergence in law: for all probability Radon measures α and
β ∈M(X )+

1 .

0 = Sε(α, α, c) ≤ Sε(α, β, c), (2.27)
α = β ⇐⇒ Sε(α, β, c) = 0, (2.28)
αn ⇀ α ⇐⇒ Sε(αn, α, c) ⇀ 0. (2.29)

This theorem ensures that the unique minimizer of Sε(α, β, c) = 0 is α = β on contrary to entropic-
regularized OT. It is a smoothed function and it can be approximated with an AutoDiff strategy. The
Sinkhorn divergence has been used successfully in the context of generative models [Genevay 2018] or
gradient flows [Feydy 2019] for instance. An important aspect of the Sinkhorn Divergence is its sample
complexity which interpolates between OT and MMD, it is a concept that we detail in Section 7.2.1.

2.4 Optimal Transport extensions
In this section we review several other variants of optimal transport. The first variant is called the
Gromov-Wasserstein distance and can compare measures which lie in different metric spaces. We present
it as we investigate the theoretical justifications of the Gromov-Wasserstein distance computed between
minibatches as presented in Chapter 8. The second variant is the unbalanced optimal transport. UOT
allows to compare probability distributions which do not share the same mass by relaxing the marginal
constraints on the coupling. This formulation is also robust to data outliers, i.e., it is not affected negatively
by these outliers. The Unbalanced OT variant is introduced because it mitigates some downsides of
optimal transport computed between minibatches as detailed in Chapter 9. There exist other variants of
interests such as the multi-marginal optimal transport [Peyré 2019] or factored coupling OT [Forrow 2019],
but we do not present them as they are out of the scope of this manuscript.

2.4.1 Comparing measures lying in different spaces with Gromov-Wasserstein

Classical OT distances are defined when a relevant ground cost between the measures is defined. Un-
fortunately, the case where the source and the target data live in different metric spaces, such as R2

and R3, does not fall into this framework. In this section, we review the Gromov-Wasserstein (GW) dis-
tance [Mémoli 2011], which can compare measures lying in different metric spaces. It has been investigated
in the past few years and relies on comparing intra-domain distances. The general setting corresponds
to computing couplings between metric measure spaces (X , cX , α) and (Y, cY , β), where (cX , cY) are
distances, while α and β are measures on their respective spaces. One defines the Gromov-Wasserstein
distance as:

GWp((α, cX ), (β, cY)) =
(

min
π∈U(α,β)

ˆ
X 2×Y2

|cX (x,x′)− cY(y,y′)|pdπ(x,y)dπ(x′,y′)
)1/p

. (2.30)

In the discrete case the ground cost takes the form of a tensor Ci,j,k,l = |Ci,k − C ′j,l|, where C is the
ground cost between the source data and C ′ the ground cost between the target data. We can interpret
the GW distance as follows: the coupling tends to associate samples that share common relations with
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the other samples in their respective metric spaces. The Gromov-Wasserstein distance is not convex in
the transport plan, but it is linear in the tensor cost.

However, the Gromov-Wasserstein distance is challenging to compute, as a non convex quadratic
program which is NP hard must be solved [Peyré 2016]. To address this issue from another perspective,
one can realign the spaces X and Y using a global transformation before using the classical Wasserstein
distance [Alvarez-Melis 2019]. In this paper, the authors cast the problem as a joint optimization over
transport couplings and transformations chosen from a flexible class of invariances. Furthermore, an
entropic variant of Gromov-Wasserstein [Peyré 2016] has been proposed to reduce its computational
complexity following the same framework defined in Section 2.3. A Sinkhorn-like algorithm can also
be adapted to the entropic-regularized Gromov-Wasserstein problem. A Sinkhorn Gromov-Wasserstein
divergence has been introduced in [Bunne 2019], but its positivity remains an open question. More
recently, a sliced variant has been introduced in [Vayer 2019b] in the case of the specific squared Euclidean
ground cost. Finally, a tree variant was proposed to accelerate the computation of Gromov-Wasserstein
in [Le 2019]. We now review the metric properties of the Gromov-Wasserstein distance.

Metric properties Gromov-Wasserstein GW defines a distance between different metric measure spaces
under some hypotheses on the measure spaces. Let us first define isometries:

Definition 8 (Isometry). Let (X , dX ) and (Y, dY) be two metric spaces. An isometry is a sujective map
ϕ : X → Y that preserves the distances:

∀x,x′ ∈ X , dY(ϕ(x), ϕ(x′)) = dX (x,x′). (2.31)

Thanks to the metric properties of dX , an isometry is bijective. Indeed for ϕ(x) = ϕ(x′) we have
dY(ϕ(x), ϕ(x′)) = 0 = dX (x,x′) and hence x = x′. By construction, the inverse map ϕ−1 is an isometry
as well. The isometry concept can be extended between measure spaces.

Definition 9 (Strong isomorphism). Let (Rd, dRd , α), (Rq, dRq , β) be two measure spaces. We say that
(Rd, dRd , α) is strongly isomorphic to (Rq, dRq , β) if there exists a bijection ϕ : supp(α)→ supp(β) such
that:

i ϕ is an isometry, i.e. dRq (ϕ(x), ϕ(x′)) = dRd(x,x′) for x,x′ ∈ supp(α)2.

ii ϕ pushes α forward to β, i.e. ϕ#α = β.

However, the notion of strong isomophism relies on the notion of metric. This, in turn, means that
metrics should be used in the GW distance definition. That is why we introduce the concept of weak
isomorphism in order to consider other ground costs.

Definition 10 (Weak isomorphism). Let (Rd, cRd , α), (Rq, cRq , β) be two measure spaces. We say that
(Rd, cRd , α) is weakly isomorphic to (Rq, cRq , β) if there exists (Rq′ , cRq′ , ζ), with supp(ζ) = Rq′ and maps
ϕ0 : Rq′ → Rd,ϕ1 : Rq′ → Rq such that:

i cRq′ (z, z′) = cRd(ϕ0(x), ϕ0(x′)) = cRq (ϕ1(x), ϕ1(x′)) for z, z′ ∈ (Rq′)2.

ii ϕ0#ζ = α and ϕ1#ζ = β.

The isometry notion allows us to compare two different metric spaces. We are now ready to enumerate
the Gromov-Wasserstein metric properties.
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Theorem 2.4.1 (Metric properties of GW). Let (Rd, dRd , α), (Rq, dRq , β) be two measure spaces.
The Gromov-Wasserstein is symmetric, positive and satisfies the triangle inequality. More precisely,
let (Rd, dRd , α), (Rq, dRq , β), (Rq′ , dRq′ , ζ) be measure spaces, we have:

GWp((α, dRd), (β, dRq )) ≤ GWp((α, dRd), (ζ, dRq′ )) + GWp((ζ, dRq′ ), (β, dRq )). (2.32)

The separability axiom is verified under the following condition:

i GWp((α, dRd), (β, dRq )) = 0 if and only if (Rd, dRd , α) and (Rq, dRq , β) are strongly isomorphic.

ii GWp((α, dRd), (β, dRq )) = 0 if and only if (Rd, dRd , α) and (Rq, dRq , β) are weakly isomorphic.

iii More generally, for any p ≥ 1, GWp((α, dpRd), (β, d
p
Rq)) = 0 if and only if (Rd, dRd , α) and

(Rq, dRq , β) are strongly isomorphic.

The positivity is clear by the GW definition. The symmetry and triangle inequality proof can be found
in [Chowdhury 2019, Theorem 16]. For (ii), the proof can be found in [Sturm 2012, Lemma 1.10]. For
(iii), the proof is available in [Chowdhury 2019, Theorem 18]. We now state the distance theorem for
Gromov-Wasserstein.

Theorem 2.4.2 (GW is a distance). GWp is a distance on
(
Rd, ‖.‖d, α ∈ Pp(Rd); d ∈ N

)
quotiented

by the strong isomorphisms, where ‖.‖d is a norm on Rd.

The Gromov-Wasserstein distance allows to compare probability measures which lie in non comparable
metric spaces. In the next section, we detail an OT variant which can compare measures with different
masses.

2.4.2 Unbalanced Optimal Transport: relaxation of mass constraints

Due the mass conservation constraint, optimal transport can not compare measures with different mass.
Unbalanced OT is a generalization of ’classical’ OT that relaxes the conservation of mass constraints by
allowing the system to either transport or create and destroy mass. In this section, we discuss this loss
and its advantages over the original optimal transport formulation.

The unbalanced considered optimal transport formulation is built upon [Liero 2017,Frogner 2015]
which replaces the ’hard’ marginal constraints of OT by ’soft’ penalties using Csiszàr divergences. A
dynamical formulation has been investigated in [Chizat 2017,Chizat 2018b] but is out of the scope of
this manuscript. There exists other extensions of the static formulations of OT. A famous one is partial
OT which consists in transporting a fixed budget of mass [Figalli 2010a] or to move mass in and out of
the system at a fixed cost [Figalli 2010b]. Another line of work proposes to optimize over various sets of
Lipschitz functions [Hanin 1992,Piccoli 2014,Schmitzer 2017]. One can also replace Csiszàr divergences
by integral probability metrics [Nath 2020].

To define this unbalanced variant, consider a convex, positive, lower-semicontinuous function φ such
that φ(1) = 0. Define φ′∞ = limx→+∞ φ(x)/x that we suppose strictly positive. Csiszàr divergences Dφ

are measures of discrepancy that compare pointwise ratios of mass using a penalty φ and are defined
as Dφ(x,y) =

∑
yi 6=0 yiφ

(
xi
yi

)
+ φ′∞

∑
yi=0 xi. Total Variation and Kullback-Leibler divergences are

particular instances of such divergences. Consider two positive measures α, β ∈M+(X ). The Unbalanced
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Algorithm 2 Sinkhorn Algorithm
1: Inputs : histograms a and b, cost matrix C, regularization coefficient ε, penalisation coefficient τ
2: K = exp(−C/ε)
3: Define at random (u,v) ∈ Rn+ × Rm+
4: while (u,v) did not converge do
5: u = (a � (Kv)) τ

τ+ε

6: v = (b� (K>u)) τ
τ+ε

7: end while
8: return u,v

Optimal Transport (UOT) program between measures and cost c is defined as

OTτφ(α, β, c) = min
π∈M+(X 2)

ˆ
cdπ + τ(Dφ(π1‖α) +Dφ(π2‖β)), (2.33)

where π is the transport plan, π1 and π2 the plan’s marginals and τ the marginal penalization. Note that
the marginals of π are no longer equal to (α, β) in general. Regarding the metric properties we have the
following theorem.

Theorem 2.4.3. Consider the square Euclidean ground cost c(x,y) = ‖x − y‖2 and the Csiszàr
divergence Dφ = KL, then the Unbalanced OT cost OTτφ(α, β, c) 1

2 is the Gaussian–Hellinger distance,
which is a distance on M+

1 (Rd).

Proof. The proof can be found in [Liero 2017].

Finally, note that an unbalanced variant of the Gromov-Wasserstein distance was proposed and studied
in [Séjourné 2020]. In this paper, the authors defined a distance and an upper-bounding relaxation which
is more tractable. Both of them allow the comparison of metric spaces equipped with arbitrary positive
measures up to isometries.

Entropic regularization Straightforwardly, it is possible to define an entropic extension of unbalanced
optimal transport. It is defined as

OTτ,εφ (α, β, c) = min
π∈M+(X 2)

ˆ
cdπ + εKL(π|α⊗ β) + τ(Dφ(π1‖α) +Dφ(π2‖β)). (2.34)

The formulation considered is computable via a generalized Sinkhorn algorithm [Chizat 2018a,
Séjourné 2019] which is proven to converge and detailed in Algorithm 2. A recent analysis of the
Sinkhorn algorithm for Dφ = KL proved a convergence rate of Õ(n2/ε) [Pham 2020]. For these reasons,
we rely in this manuscript on the unbalanced optimal transport with Kullback-Leibler divergence as our
function φ and the entropic regularization. We illustrate the effect on the transport plans in Figure 2.5.
We can see that when the parameter τ is high we indeed recover entropic-regularized OT, but when this
parameter is low, the intensity of the connections declines.

Recently, an Unbalanced Sinkhorn Divergence was proposed in [Séjourné 2019]. It was proven to be a
generalization of the original Sinkhorn Divergence. Furthermore it keeps the same properties, i.e., when
e−C/ε is a positive definite kernel, it is a convex, symmetric, positive definite loss function which metrizes
the convergence in law [Séjourné 2019]. The Unbalanced Sinkhorn Divergence reads

Sτ,εφ (α, β, c) = OTτ,εφ (α, β, c)− 1
2 OTτ,εφ (α, α, c)− 1

2 OTτ,εφ (β, β, c) + ε

2(mα −mβ)2, (2.35)
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Figure 2.5: Optimal transport illustration between 2D measures. From left to right, we have an illustration of
original OT, entropic-regularized OT and entropic-regularized unbalanced OT for two parameters τ .

where mα =
´
dα and mβ =

´
dβ. The main difference is the introduction of the mass terms which are

necessary to ensure positiveness and to recover a divergence. Those terms are equal and cancel each
other in the case of balanced OT. Thus the Unbalanced Sinkhorn Divergence allows to mitigate between
accelerated computations and conservation of key theoretical guarantees of the unbalanced formulation.

Discussion A downside of the unbalanced formulation is that for small values τ , the unbalanced OT
cost is very small because too much of the mass is destroyed. This leads to a transport plan with a very
small norm, and thus to gradients with a small norm which might increase the training time of neural
network in domain adaptation [Fatras 2021b] for instance. This will be discussed in Chapter 9.

2.5 Conclusion
We introduced the concept of optimal transport in this chapter. We reviewed its primal definition, which
corresponds to a linear program in the discrete case, and the corresponding dual formulation. Afterwards,
we reviewed the 1D optimal transport closed-form solution. We then discussed the computational and
memory complexities of OT. Next, we presented the entropic-regularized optimal transport variant, its
impact on the OT problem and some of its solvers. To recover the separability axiom from the entropic
regularization, we introduced the Sinkhorn Divergence which merges the best of entropic-regularized
OT and exact OT. Finally, we discussed two other optimal transport variants of interests: the Gromov-
Wasserstein distance which compares probability measures in different metric spaces and the unbalanced
optimal transport variant which relaxes the marginal constraints and can compare measures with different
mass. In the next section, we present more formally the supervised learning setting as well as the
adversarial formulation and the connections with optimal transport.
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3.1 Classification using neural networks
In this section, we start by presenting how optimal transport can be used in a context of classification
with neural networks. We present formally the supervised learning problem for multi-class and multi-
label classification. Then we review how OT can be used in a supervised learning setting. We then
present the domain adaptation problem, which consists of transferring knowledge from a source dataset
to a target dataset, and how optimal transport is a well suited tool to achieve this transfer. After
discussing classification problems, we review basic methods to generate highly realistic data. We start
with autoencoders and follow with generative adversarial networks. We also discuss how optimal transport
was used to solve these problems.

3.1.1 Supervised learning and multi-label classification

Supervised learning

We start with the problem of supervised learning. In supervised learning, we want to find a function
f ∈ F that describes the relationship between a random feature vector x and a random target vector y,
which follow the joint measure P(X , Y). To this end, we first define a loss function L that penalizes the
differences between the prediction f(x) and the target y, for instance an image x and the given class
encoded in a label y. Then, we define the average of the loss function L over the data measure P, also
known as the expected risk:

R(f) =
ˆ
L(f(x),y)dP(x,y). (3.1)

Unfortunately the joint measure P(X , Y) is unknown and we have instead access to empirical
samples drawn from this joint measure. Formally, let the i.i.d. data and their label be denoted as
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(x1,y1), · · · , (xn,yn). We thus approximate the expected risk with the empirical measure, called empirical
risk. We then minimize this empirical risk known as empirical risk minimization (ERM) [Vapnik 1998]. It
is defined as

argminθ
1
n

n∑
i=1

L(fθ(xi),yi), (3.2)

where fθ is the classifier parametrized by a vector θ such as a deep neural network. We consider a
multi-class problem, i.e., y = ec = [0, · · · , 0, 1, 0, · · · , 0], where 1 is at the c-th position. y is a "one-hot"
vector. In general, the last function of a neural network is a softmax activation function whose output is a
probability vector. The hypothesis of multi-class supervised learning is that one image has a single element
to classify. However, real-world images have several classes. For instance autonomous vehicles need to
deal with a rich environment composed of cars, traffic signals, pedestrians and many other important
elements. To correctly classify all these elements, the supervised learning paradigm needs to be adapted.
It is called multi-label classification and it is the topic of the next section.

Multi-label classification and Optimal Transport

In this section we review the multi-label classification problem and then, how we can use optimal transport
losses to tackle this problem.

Multi-label classification In multi-label classification, the label is not a "one-hot" vector anymore
and thus not a probability vector. In this problem, we can encode several information in the label and the
formalism is the following. Each element of the label corresponds to a class which potentially appears
in the image. Thus an image with a dog, a human and a frisbee would have three "1" for each element
in the label. So the neural network outputs now a vector where its elements are all probabilities for the
different classes to be in the image. In order to get a probability classification for each output element,
the last activation function of a neural network is usually a sigmoid function [Kang 2006]. The function
f is still learnt through empirical risk minimization and the contrast loss is usually a Kullback-Leibler
divergence [Long 2015a].

However the usual loss L for classification penalizes the error in an isotropic manner, i.e., they give the
same importance to all errors between all classes independently. This behaviour does not reflect real life
impact of errors, for instance confusing a cat and a dog is a bigger mistake than confusing two breeds of
dogs. In the next paragraph, we discuss how optimal transport can be used in ERM to take into account
the class similarities.

Multi-label Optimal Transport loss Let fθ : X 7→ (P)nC be a map, where P denotes a probability
and where nC is the number of classes. In multi-label classification, the function fθ(x) and the label y
are measures of mass ‖fθ(x)‖1 and ‖y‖1 respectively. Thus we can use unbalanced optimal transport
cost as our function L to measure the dissimilarities between the label and the model output as the mass
‖fθ(x)‖1 and ‖y‖1 are generally different. The strength of optimal transport losses is that it can take
into account class similarities contrary to other losses. The similarities are encoded in the ground cost C.
Formally, the UOT cost can be computed as h(fθ(x),y,C), where h is the entropic-regularized unbalanced
optimal transport cost [Frogner 2015] as introduced in Section 2.4.2. Note that it is a smooth function
w.r.t. the histograms, thus it has well defined gradients to train the model fθ with stochastic gradient
descent [Bottou 2010]. The difficulty is to choose an informative ground cost. In [Frogner 2015], authors
chose to rely on an Euclidean distance between the Word2Vec class representation [Mikolov 2013]. This
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Figure 3.1: Illustration of the Office Home dataset.

choice allows to measure the similarities between the classes. Using the UOT loss in ERM improved the
performances of the trained models on standard real-world datasets. Straightforwardly, the unbalanced
optimal transport cost could be used in a multi-class learning problem as detailed in the previous section.
In the next section, we discuss a problem where we want to classify unlabelled data using labeled data of
two different domains.

3.1.2 Domain adaptation

In this section, we introduce the problem of Domain Adaptation (DA). It consists of transferring knowledge
from a source dataset to a target dataset by using the labeled source data to classify the unlabeled target
data [Pan 2010]. We follow the settings of unsupervised DA where we have a labeled source domain
dataset Ds =

{
(xsi ,ysi )

}n
i=1,xi ∈ Rd and an unlabelled target domain dataset Dt =

{
(xtj)

}n
j=1,xj ∈ Rd.

Other variants exist such as semi-supervised domain adaptation, where a few labels are available in the
target domain and supervised domain adaptation where all labels in the target domain are available.
There are also extensions of domain adaptation called multi-source domain adaptation or multi-target
domain adaptation where we have respectively access to several source or target datasets. We give an
illustration of the Office-Home dataset [Venkateswara 2017] with different domains, see Figure 6.12.

In vanilla domain adaptation setting, both domains share the same label space Ys = Yt. Other variants
can be considered such as partial domain adaptation, where extra classes in the source domain are present
but not in the target domain Yt ⊂ Ys and open set domain adaptation, where extra classes are in the
target domain but not in the source domain Ys ⊂ Yt. Those two variants need dedicated solutions that we
discuss latter. Usually, at least one of the two following assumptions is made in most domain adaptation
methods:

• Class imbalanced: Label distributions are different in the two domains (Ps(y) 6= Pt(y)), but the
conditional distributions of the samples with respect to the labels are the same (Ps(xs|y) = Pt(xt|y)).
Open set and partial DA settings are special cases of class imbalanced;

• Covariate shift: Conditional distributions of the labels with respect to the data are equal Ps(y|xs) =
Pt(y|xt). However, data distributions in the two domains are supposed to be different Ps(xs) 6=
Pt(xt).

Based on the covariate shift hypothesis, [Sugiyama 2008] used an importance re-weighting strategy to
learn a classifier, however it requires a large enough overlapping of distributions. Kernel alignment has
also been proposed [Zhang 2013]. Other works learn a feature map T such that the new representations
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of input data are matching, Ps(T (x)) = Pt(T (x)) [Gong 2016]. Other approaches consider different class
of maps such as projection [Baktashmotlagh 2013,Gong 2012,Fernando 2013,Long 2014,Gong 2016] and
affine transform [Zhang 2013]. We can also use different divergences between the probability measures of
source and target data [Si 2010,Long 2014,Gong 2016], but unfortunately these divergences require that
the measures share the same support.

Another line of works is the alignment strategy in feature spaces and it can be summarized as
follows; the neural network is used as a feature extractor and we align the extracted data features when
data share the same class. The alignment of data spaces can be done with weight sharing [Sun 2016],
reconstruction [Aljundi 2016], backpropagation [Ganin 2015] or by adding Maximum Mean Discrepancy
and association-based losses between source and target layers [Long 2015b,Haeusser 2017]. The alignment
can also be achieved by an adversarial formulation which pushes CNN to be able to discriminate whether a
sample comes from the source or the target domain [Luo 2017,Tzeng 2015,Ganin 2016,Long 2018,Chen 2020].
Finally, the most recent works extend this adversarial logic to the use of generative models [Liu 2017,
Sankaranarayanan 2018,Murez 2018], they use a class-conditioning or cycle consistency term to learn the
discriminative embedding, such that embedded similar images in both domains are projected close by in
the latent space.

In parallel of the empirical methods, several works were dedicated to make an analysis of the alignment
strategy. They developed a bound on the target domain error rate by a source error rate plus an estimable
term reflecting a certain distance between domains, called the alignment term, plus a non estimable term
that is assumed to be small when adaptation is possible [Zhang 2019,Germain 2013]. [Ben-David 2007]
considered the bounds for 0-1 loss in binary classification setting by introducing a divergence term that
takes into account the complexity of the hypothesis space, and to a case where the hypothesis case is a
RKHS [Cortes 2014]. In the next section, we discuss how optimal transport has been successful at solving
the domain adaptation problem.

Optimal Transport in Domain Adaptation

Optimal transport has been successfully used on the domain adaptation problem. Earlier work [Courty 2014,
Courty 2017a] used optimal transport to find a coupling between the source and the target domains, then
they transported the source data and their labels into the target domain with a barycentric mapping
from the coupling. Finally they learnt a classifier on the transported samples in the target domain. This
strategy is illustrated in Figure 3.2. Authors studied a great variety of regularized optimal transport to
create optimal connections between samples. As we discussed in Section 2.3.3, a lpl1 norm regularization
was proposed in [Courty 2014] in order to concentrate the transport information on elements of the same
class. In [Courty 2017a], a group-lasso regularization was used to promote the mass transfer from source
data with the same labels to a given target data. They also introduce a Laplacian regularization which
aims at preserving the data structure – approximated by a graph – during transport. On the theoretical
side, [Redko 2017] justified that the Wasserstein metric can be used as a divergence measure between
distributions to obtain generalization guarantees.

We now detail more recent approaches. jdot is a method where optimal transport was used to find
a coupling on the joint data and label distributions [Courty 2017b]. The ground cost incorporated a
term on the data features and on the labels. Thus for two losses d and L, two data xi,yi and xj and a
classifier fθ, the cost is of the form c(xi,yi,xj , fθ(xj)) = ηd(xi,xj) +L(yi, fθ(xj)). Intuitively, matching
close source and target samples with similar labels has a smaller cost than with different labels. η is a
positive parameter which balances the metric in the feature space and the label loss. When η is set to
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Figure 3.2: Illustration of [Courty 2017a] method. (left) dataset for training, i.e. source domain and target domain.
Note that a classifier estimated on the training examples clearly does not fit the target data. (middle) a data
dependent transportation map is estimated and used to transport the training samples onto the target domain.
Note that this transformation is usually not linear. (right) the transported labeled samples are used for estimating
a classifier in the target domain. Courtesy of [Courty 2017a].

+∞, we recover the initial setting from [Courty 2017a]. Finally, authors [Courty 2017b] also provided a
generalization bound to justify their method theoretically.

Based on this approach, deepjdot [Damodaran 2018] used a neural network gψ as feature
extractor, and used it instead of the data in the ground cost. Hence, the ground cost was
c(gψ(xi),yi, gψ(xj), fθ(gψ(xj))) = ηd(gψ(xi), gψ(xj)) + L(yi, fθ(gψ(xj))). The feature extractor gψ
and the classifier fθ are then trained together to match the source and the target measures. The full
deepjdot loss and architecture is illustrated in Figure 3.3. It is important to note that the coupling was
computed between minibatches of source and target data to keep a small computational complexity. This
approximation is used in several problems and is the topic of Part III. This strategy reached state-of-the-art
results. Other methods based on deepjdot, which focused on the coupling, were published [Xu 2020a,Fa-
tras 2021b] and other methods were designed to handle the case of open set DA [Xu 2020b] and partial
DA [Fatras 2021b].

Several other alignment strategies based on optimal transport were developed [Mengxue 2020]. Authors
built an attention-aware transport distance, which can be viewed as the prediction feedback of the
iteratively learned classifier, to measure the domain discrepancy. Another work learnt the transport cost
for the specific task of domain adaptation [Kerdoncuff 2020]. Finally, optimal transport can be coupled
with adversarial learning to learn a domain invariant feature representation. [Shen 2018] uses a neural
network, denoted by the domain critic, to estimate empirical Wasserstein distance between the source
and target samples and optimizes the feature extractor network to minimize the estimated Wasserstein
distance in an adversarial manner. And more recently, [Dhouib 2020b] introduced an OT-based adversarial
approach to encourage large margin separation.

In this section, we have reviewed the domain adaptation problem as well as the different designed
methods to solve it. We also discussed the specific case where optimal transport has been used to solve
this problem. In the next section, we do not consider a classification problem but a data generation
problem.
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Figure 3.3: Overview of the deepjdot method. While the structure of the feature extractor g and the classifier f
are shared by both domains, they are represented twice to distinguish between the two domains. Both the latent
representations and labels are used to compute per batch a coupling matrix Π that is used in the global loss
function. Courtesy of [Damodaran 2018].

3.2 Generating high realistic data with Deep Learning
In this section, we review two main methods to generate highly realistic data. The first one is the
autoencoder method. It aims to transform inputs into latent vectors and then, transform these same
latent vectors as their corresponding inputs, with the least possible amount of distortion. We will review
the basic idea and how optimal transport has been useful to solve it. Then we will review the Generative
Adversarial Networks. Following an adversarial training, we will show how deep neural networks can
generate data in an unsupervised way and how optimal transport has also been coupled with Generative
Adversarial Networks.

3.2.1 AutoEncoder: Encoding data as a latent space

AutoEncoder [Rumelhart 1986] has become a standard tool to generate data because it has seen many
improvements recently. It is composed of two distinct parts. An encoder whose the purpose is to encode
an input into a latent vector which lies in a latent space. The second element is a decoder which aims to
decode the latent vector into the original input. The encoder and the decoder are trained in order to
minimize the reconstruction loss between the output and the original input. Then the latent space and
the decoder are used to generate new data. Unfortunately, when the encoder is trained in this manner, it
does not give a useful representation and sampling from the latent space becomes hard [Bengio 2013].

To overcome these difficulties, Variational Autoencoders (VAEs) [Kingma 2014] minimizes a variational
upper bound on the Kullback-Leibler divergence. The upper bound is a reconstruction loss between the
output and the input coupled with a regularization. Formally, we denote the measure associated to real
and training data as Pr ∈M+

1 (X ) (a positive Radon measure). We denote a latent variable model PG,
specified by the prior distribution Pz on the latent space Z, and the decoder PG(X|Z), which models
the conditional likelihood. For two random variables X,Z, we denote the encoder as Q(Z|X) which
approximates the posterior distribution of the decoder. The regularization is EPr

(
DKL(Q(Z,X),Pz)

)
and it captures how distinct the image by the encoder of each training set is from the prior.

The total loss of VAEs is then:

DVAE(Pr,PG) = inf
Q(Z,X)∈Q

EPr
(
− EQ(Z,X) log(pG(X|Z)) +DKL(Q(Z,X),Pz)

)
, (3.3)
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Figure 3.4: Both VAE and WAE minimize two terms: the reconstruction cost and the regularizer penalizing
discrepancy between Pz and distribution induced by the encoder Q. VAE forces Q(Z|X = x) to match Pz for
all the different input examples x drawn from Pr. This is illustrated on picture (a), where every single red ball
is forced to match Pz depicted as the white shape. Red balls start intersecting, which leads to problems with
reconstruction. In contrast, WAE forces the continuous mixture QZ :=

´
Q(Z|X)dPr to match Pz, as depicted

with the green ball in picture (b). As a result latent codes of different examples get a chance to stay far away from
each other, promoting a better reconstruction. Courtesy of [Tolstikhin 2018].

where Q is the set of, possibly restricted, conditional probability distributions. The decoder PG(X|Z)
is parametrized by a neural network and can have any form as long as its density pG(x|z) can be
computed and differentiated with respect to G’s parameters. A standard choice is a Gaussian distribution
PG(X|Z) = N ((X;G(Z)), σ2 · I). If Q is the set of all conditional probability distributions Q(Z,X),
the VAE loss coincides with the negative marginal log-likelihood DVAE(Pr,PG) = −EPr log(PG(X)).
However to make the Kullback-Leibler divergence (3.3) tractable in closed-form, [Kingma 2014] uses a
standard normal distribution Pz and restricts Q to Gaussian distributions. That is why VAE is minimizing
an upper bound on the KL-divergence DKL(Pr,PG). To reduce the gap between the Kullback-Leibler
divergence and VAE’s loss, one possibility is to consider a larger set of encoder function Q as done
in [Mescheder 2017,Makhzani 2016]. The encoder is learnt using Generative Adversarial Networks and
their adversarial learning formulation. We detail this class of generative models in the next section.

Optimal Transport meets AutoEncoders

As the purpose of autoencoders is to reduce the discrepancy between the measures Pr and PG, [Tol-
stikhin 2018] proposed to rely on optimal transport. Following the above VAE framework, [Tolstikhin 2018]
focused on deterministic decoders G(X|Z), i.e., PG = G]Pz. In this case, the Wasserstein distance can
be rewritten as

W (PG,Pz, c) = inf
Q(Z|X):Qz=Pz

EX∼PrEZ∼Q(Z|X)
[
c(X,G(Z))

]
, (3.4)

where Qz = Q(Z|X)]Pr = EX∼PrQ(Z|X). The full theorem and its proof can be found in [Tolstikhin 2018,
Theorem 1]. This theorem allows us to optimize over random encoders Q(Z|X) instead of optimizing over
all couplings between the input measures. We relax the problem by removing the constraint on Qz and
adding a penalty instead. Thus the full WAE loss is
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Figure 3.5: VAE (left column), WAE-MMD (middle column), and WAE-GAN (right column) trained on CelebA
dataset. In “test reconstructions” odd rows correspond to the real test points. Courtesy of [Tolstikhin 2018].

DWAE(PG,Pz, c) = inf
Q(Z|X)∈Q

EX∼PrEZ∼Q(Z|X)
[
c(X,G(Z))

]
+ ηDZ(Qz, Pz), (3.5)

where Q is any nonparametric set of probabilistic encoder and η the penalty constant. Similarly to
VAEs, the encoder and the decoder are parametrized by a neural network. [Tolstikhin 2018] proposed
two different regularizations DZ. The first one is called WAE-GAN where the divergence is equal to the
Jensen-Shannon divergence DZ = DJS. The divergence is estimated using a discriminator and adversarial
training as done in Generative Adversarial Networks. The other considered penalty is a MMD loss (see
Section 2.3) and it is called WAE-MMD. MMD can be estimated with U-statistics as detailed in Section
7.3 and thus can be optimized with SGD. A strength of WAE on VAE is that the encoder is a deterministic
mapping. We illustrate the difference between WAE and VAE in Figure 3.4 and we gathered some
samples of the three methods in Figure 3.5. Several other autoencoder variants of WAE were published
in [Patrini 2019,Kolouri 2019b].

In this section, we described the autoencoder as a generative model. We formulate the Variational
AutoEncoder and then the Wasserstein AutoEncoder which takes an optimal transport loss to measure
the distance between measures. In the next section, we describe another class of generative models called
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Generative Adversarial Networks.

3.2.2 Generate realistic data with Generative Adversarial Networks

In this section, we describe a popular method to generate data, the Generative Adversarial Networks
(GANs). After describing the initial formulation, we review a more recent formulation based on optimal
transport. We close this section by discussing specific applications of GANs.

A two player game formulation

Generative Adversarial Networks [Goodfellow 2014a] have become a popular unsupervised method for
data generation. Their objective is to learn a model that can generate data which are similar to a given
training dataset. It has initially been designed as a two player game between two DNNs, a generator and
a discriminator. The discriminator tries to predict if an image is real or generated and the generator
tries to fool the discriminator with its generated images. More formerly, learning a GAN corresponds
to minimizing a divergence between the measures of generated data and training data. The choice of
this distance is fundamental and has led to several variants of GANs [Arjovsky 2017,Gulrajani 2017,
Miyato 2018b,Nowozin 2016,Li 2017a,Genevay 2018]. Formally, let the measure associated to real and
training data be denoted Pr ∈ M+

1 (X ) and the generated data distribution as PG ∈ M+
1 (X ). G is a

deterministic generator, classically expressed as a neural network, that takes as input a random vector
z ∼ N (0q, Iq) to generate a sample G(z) ∼ PG, where q is the dimension of this random variable. We
generally assume that q � d, with d the dimensionality of the training data. Then, we want to reduce
the distance with the real data measure Pr. Pz is usually a Gaussian or a uniform distribution. GANs
improve the generated data quality by minimizing the Jensen-Shannon divergence between the measures
PG and Pr:

min
ψ

max
φ

Ex∼Pr [logDφ(x)]− Ez∼Pz [log(1−Dφ(Gψ(z)))]. (3.6)

However as the true measures PG and Pr are unknown, we only consider their empirical measures from
the available true data and the generated ones. Several variants were considered to control the label/class
of generated data [Mirza 2014,Odena 2017]. Figure 3.6 gathers some highly realistic GAN-generated
examples. The GAN formulation takes the form of a min-max optimization problem. It has thus bring
a lot of attention to this underlooked optimization problem and several work were published to justify
convergence or empirical methods to fasten convergence [Gidel 2019a,Gidel 2019b].

Wasserstein GAN: Optimal Transport meets GANs

The Wasserstein GAN [Arjovsky 2017] relies on a different divergence than the Jensen-Shannon divergence.
It uses the Wasserstein distance to measure the discrepancy between the generated measure and the data
measure. Unfortunately, the Wasserstein distance is intractable when one of the measure is continuous
as it is the case for the generated measure PGψ,] . Hence, [Arjovsky 2017] proposed to approximate the
Kantorovich-Rubinstein duality defined in Section 2.2.1. The difficulty of this formulation is to satisfy the
Lipschitz property of the map f . Thus we approximate f with a neural network, namely

W1(Pr,PGψ,]) = min
ψ

max
φ∈Φ

Ex∼Pr [Dφ(x)]− Ez∼Pz [Dφ(Gψ(z))], (3.7)

where Dφ is the dual potential and is within the set of 1-Lipschitz functions parameterized by weights φ,
denoted Φ. Analogous to GANs, we still call D the "discriminator" although it is actually a real-valued
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Figure 3.6: Samples generated by BigGAN model at 512×512 resolution. Courtesy of [Brock 2019].

function. In order to respect the 1-Lipschitz constraint, [Arjovsky 2017] used a weight clipping trick on
the discriminator’s weights during the optimization procedure. However this practice leads to unstability
during optimization and poor minima. Another approach was proposed in [Gulrajani 2017], involving a
gradient penalty that enforces the norm of the gradient to be equal to one, thus promoting D 1-Lipschitz.
Formally it is defined as

min
ψ

max
φ

Ex∼Pr [Dφ(x)]− Ez∼Pz [Dφ(Gψ(z))] + λEx̂∼Px̂ [(max{0, ‖∇Dφ(x̂)‖2 − 1})2], (3.8)

where Px̂ is the measure of samples along the straight lines between a pair of points from Pr and PG
and λ the regularization parameter. In practice, the true measure Pr is unknown and only an empirical
counterpart P̂r with n i.i.d. samples from Pr is available.

Other variants of GANs based on optimal transport have been published in the literature [Genevay 2018,
Salimans 2018,Fatras 2021c]. These methods relied on primal OT by using other ground cost [Salimans 2018]
or by using extracted features learned in an adversarial manner [Genevay 2018,Fatras 2021c]. We discuss
in more details these methods in Section 7.1.

Other applications of GANs

In this section, we discuss the different applications of GANs. When GANs were introduced they were first
applied to images. Since then, large scale GAN training in order to get high resolution and diverse images
was achieved in Big GAN [Brock 2019] as illustrated in Figure 3.6. GANs also allow to tackle the super
resolution task and it was studied in [Ledig 2017] and illustrated in Figure 3.7. In order to control the
attributes of the generated images, a new generator architecture was proposed in Style GAN [Karras 2019].
Other work on image inpainting use GANs to reconstruct images [Liu 2018] or even modify them with
some given labels [Jo 2019]. GAU-GAN [Park 2019] proposed to synthesize an image solely based on some
given labels.
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Figure 3.7: Super resolution samples examples from different technique. From left to right : bicubic interpolation,
deep residual network optimized for MSE, deep residual generative adversarial network optimized for a loss more
sensitive to human perception, original HR image. Courtesy of [Ledig 2017]

Recently; a line of work focused on image-to-image translation problem with GANs [Isola 2017] or
on video-to-video [Wang 2018b]. The goal was to learn a mapping function from a source input to a
corresponding realistic target output that precisely depicts the content of the source input. The input
can also be matched to several outputs as done in [Choi 2018b]. When the corresponding output of the
input is not available, CycleGAN can be used to achieve the input-to-output translation problem in an
unsupervised manner [Zhu 2017,Bansal 2018]. A similar approach was built for motion transfer in order to
create videos of people dancing known as Every Body Dance [Chan 2019]. This strategy was also applied
to domain adaptation [Murez 2018].

3.3 Conclusion

In this chapter, we have introduced the supervised learning setting for multi-class and multi-label problems.
We have presented how optimal transport can be used to tackle the supervised learning problem, with
a ground cost which encodes the class similarities. We then review the domain adaptation problem, it
consists of classifying unlabeled data in a target domain using labeled data from a source domain. Optimal
transport is used to align the domains of source and target data. In order to align the domains, recent
methods used neural networks as feature extractors.

Then we reviewed two standard methods to generate highly realistic data. We first introduce the
autoencoders which tries to reconstruct a given image from a latent space with the minimum of distortion.
It takes the form of minimizing a divergence between two distributions, a setting particularly well suited
for optimal transport, which was studied in Wasserstein autoencoder. Finally, we presented generative
adversarial neural networks. Following an adversarial training between a generator and a discriminator,
we showed that it also minimizes a divergence between measures. Hence, an optimal transport based
variant, called Wasserstein GAN, was used in place of the original divergence. We reviewed the different
advantages of this method and its implementation.

In the next part, we introduce the notion of adversarial examples and how it can be used to attack
and to train a neural network for classification tasks. We then introduce the first two contributions of this
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manuscript; a method based on virtual adversarial training to learn in the presence of noisy labels; and a
method to generate data which are misclassified by a pre-trained classifier.
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In this chapter we review adversarial examples in deep learning. We first give a definition and general
algorithms to generate such examples and detail how we can attack a classifier with such examples. We
then describe the semi-supervised learning problem and how we can design a new training strategy based
on adversarial examples for semi-supervised learning.

4.1 Adversarial examples: attacking a classifier

4.1.1 Adversarial examples: an unexpected weakness

In this section, we present the concept of adversarial attacks. An adversarial example is an example
which was designed in order to fool a pre-trained classifier. The notion of adversarial examples for
neural networks was first discussed in [Szegedy 2013]. They observed that perturbed images with small
modifications can lead to a large change in the classification and to incorrect class predictions. These
examples pose security issues as one could for instance fool an autonomous vehicle by using stickers or
paint on traffic signals in order to make the car fail to interpret the signals. Adversarial examples thus
create new lines of research to make the neural networks robust to such attacks or to use this concept for
training purposes.

Attack and defense lines of research have studied the adversarial robustness of neural networks, i.e.
the sensitivity of neural networks against these adversarial attacks. The attack line of research aims
at creating adversarial examples for a pre-trained classifier. It also studies whether the adversarial
examples can be transferred to other unseen pre-trained classifiers. To attack a classifier, we can have
different hypotheses regarding the knowledge of the pre-trained classifier [Goodfellow 2015,Song 2018].
In order to make the neural network more robust to adversarial examples, efficient methods include
specific training procedures with better adversarial resistance [Zhang 2018a,Papernot 2016], modified
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Figure 4.1: Example of adversarial example for a GoogLeNet [Szegedy 2014] trained on ImageNet. J(θ,x,y) is
the loss function to train the neural network. Courtesy of [Goodfellow 2015].

training data [Goodfellow 2015, Szegedy 2013] or the input samples before feeding them to classifiers
[Hendrycks 2017,Samangouei 2018].

4.1.2 Generating adversarial examples

Generating adversarial examples with the classifier’s gradients. Turning to the existing litera-
ture on adversarial examples, there exists two main strategies to generate such examples. The first strategy
is to add a small perturbation to images that are correctly classified, i.e., xadv = x+ ra, ‖ra‖ ≤ ρ. The
small perturbation, which can be computed from the classifier gradients, fools the classifier into making
the wrong prediction. Intuitively, the gradient leads toward the direction with the most variation in the
prediction. This is the main idea of the Fast Gradient Sign Method (FGSM) algorithm [Goodfellow 2015]
and it is illustrated in Figure 4.1. Formally, let θ be the parameters of our neural network fθ, the true
class probability q(x) and a divergence D. As q(x) is unknown, we use the available label y instead. We
look for the perturbation that leads to the largest change in the classification

ra = argmax
r,‖r‖≤ρ

D(y, fθ(x+ r)). (4.1)

Furthermore, estimating ra is untractable but we can approximate it with a linear approximation of D
with respect to r in (4.1). Thus the adversarial example is generated as xa = x+ ρ sign(∇xL(fθ(x),y))
and the gradient is computed using backpropagation. One problem of this approach is that one needs
to know the full classifier architecture to compute the gradients. Another problem is that even a small
perturbation can harm the image quality and lead to images that are not similar to the original data
anymore. Such images can easily be detected as adversarial images [Feinman 2017,Pang 2018].

Generating adversarial examples with a GAN. The second paradigm does not require access to the
classifier. It looks for adversarial examples only by having access to the classifier’s prediction fθ(x). Most
of the techniques using the second strategy try to find adversarial examples using GANs [Goodfellow 2014a].
For instance, to generate adversarial examples without requiring the classifier’s gradients, [Zhao 2018] uses
a GAN and an invertor. The generator is a function which maps a latent space to the true data space.
On the other hand, the invertor is an inverse function which maps the true data space to the latent space
and they use it to look for adversarial examples. They add small perturbations to the latent vector z∗

which represents a data x∗ until they find an adversarial example. This method allows them to have very
realistic adversarial examples without using the classifier’s gradients. In [Song 2018] the authors use an
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AC-GAN [Odena 2017] to model the data distribution with the assumption that an ideal model could
generate all the sets of legitimate data. With such a model they search in the latent space for all the
adversarial examples. Their search is done by minimizing the confidence score of a classifier while having
the auxiliary classifier still predicting the correct class. So the adversarial examples look like true images
and are adversarial for the attacked classifier.

4.1.3 Concepts of adversarial attacks

We gather now the different concepts related to adversarial attacks and some definitions. We rely on
notations used in [Goodfellow 2015,Zhao 2018,Song 2018,Brown 2018]. We define by ypred = fθ(x) the
operation of getting the vector in the simplex of prediction (for every classes) ypred of the datum x with
respect to fθ. Furthermore for a classifier fθ, the probability to belong to the correct class y of a sample
x is denoted as fyθ (x). Without loss of generality, we identify here X to a set of normalized images with d
pixels I , {[0, 1]d}. Depending on the application, we note that X can be different (e.g. spectral data).
NI ⊆ I stands for the subset of all natural images. By natural images, we mean an image which is likely
to be drawn from the empirical distribution of training images Pr, therefore related to a given training set
of images. Assume that we dispose of an oracle o, such that o(x) is the ground truth of the considered
classification or prediction problem. In an attack scenario, we are given a classifier fθ that one wants
to fool. This can be understood in several ways. Before, we precise two different cases: A white box
attack is an attack where an attacker has complete access to the classifier’s structure and parameters
θ (e.g. when we have access to the neural network gradients). Oppositely, a black box attack is an
attack where the only knowledge is the outputs {ypred} for some inputs {x}. Note that we suppose in the
following that we have access to a fixed set of pairs {x,ypred} but we cannot query the classifier on new
samples (since we could compute approximated gradients similarly to FGSM [Goodfellow 2015]). We now
give a detailed description about misclassified example categories.

As described in the above section, the idea of perturbation-based example is to add a small
perturbation to an input in order to create an adversarial example. Most of the time; the perturbation is
limited by a factor ρ. The perturbed example is an adversarial examples if fθ(x) 6= fθ(xadv). Formally, it
can be written as {xadv ∈ I | ∃xtest ∈ I, ‖xadv − xtest‖ < ρ ∧ o(xadv) = o(xtest) = fθ(xtest) 6= fθ(xadv)}.
Natural examples are misclassified data-like images. It can be misclassified training or testing data for
instance. Some perturbation-based examples are also natural examples. Formally, it can be written as
{xadv ∈ NI | o(xadv) 6= fθ(xadv)}. The last category is unrestricted examples. In this context there
are both a pre-trained classifier and an oracle. Unrestricted examples are samples where the oracle and
the classifier predict different result. Formally, it can be written as {xadv ∈ I | o(xadv) 6= fθ(xadv)}.

We are now ready to describe different attacks against the pre-trained classifier, i.e., the different
strategies to fool the classifier. Untargeted attack stands for an attack from any adversarial example.
Targeted attack acknowledges an attack with an adversarial example from a source label, which is
classified as a target label, ytarget = fθ(xadv) 6= ysource = o(xadv).

In the next section, we study how one can use adversarial examples to define a new training procedure
for neural networks.

4.2 Virtual Adversarial Training for semi-supervised learning
In this section, we describe the semi-supervised learning problem, a variant of supervised learning, and we
detail a state-of-the-art algorithm to solve it based on adversarial examples and semi-supervised learning
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hypotheses.

4.2.1 Semi-supervised learning

Semi-supervised learning is a classification task where some data have labels (x1,y1), · · · , (xl,yl) while
the remaining data are unlabelled xl+1, · · · ,xn such that the number of labelled data is usually small,
i.e., l � n. This is a challenging problem because neural networks are known to need a large amount
of data to achieve good generalization [Zhang 2017]. Hence learning neural network classifiers in semi-
supervised learning is a difficult problem. To overcome the lack of labelled data, several works relied on
using a relationship graph between the labeled and the unlabeled data to spread the label information
[Belkin 2004]. A more recent approach uses input perturbations with deep neural networks [Zhang 2018a,
Berthelot 2019,Miyato 2018a]. The method we describe in the next section, called Virtual Adversarial
Training (VAT) [Miyato 2018a], is one of these methods. They rely on the semi-supervised learning
assumptions [Chapelle 2006, Section 1.2],

1. Data which are close to each other are more likely to share the same label.

2. Data tend to form clusters, and data in the same cluster are more likely to share a label.

VAT is built on the semi-supervised hypotheses to classify unlabeled data using labeled data. It
promotes a local uniformity of the classifier in a ball around each input, thus data close to each other
should share the same label as well as data inside a cluster. It is the topic of the next section.

4.2.2 Virtual Adversarial Training: the power of approximations

In this section, we introduce the Virtual Adversarial Training. We start by presenting the adversarial
training framework and then how we use it to define a regularization for semi-supervised learning.

Adversarial Training. To make the model fθ more robust to adversarial examples, one can use the
generated adversarial examples from the FGSM method to define a new loss function called adversarial
training [Goodfellow 2015]. For a sample x with corresponding label y, the adversarial training framework
aims at minimizing a measure of discrepancy between the true class probability, q(x), and the prediction
of a model fθ for a slightly perturbed version of x, fθ(x+ ra). We discussed the computation of ra in
Section 4.1. In other words, adversarial training tries to minimize the change in classification in a ball
around each input. It takes the form of the following regularization,

LAT(x, θ) = D(q(x), fθ(x+ ra)), (4.2)
where ra = argmax

r,‖r‖≤ρ
D(q(x), fθ(x+ r)).

In Eq. (4.2), D(p1, p2) measures the discrepancy between the probability vectors p1 and p2 thanks to
the divergence D. For instance, D can be the Kullback-Leibler divergence. ρ represents the radius of the
local ball-shaped neighbourhood, where we seek the adversarial sample.

Approximating the true measure. The true class probability q(x) is unknown and intractable in
practice. In semi-supervised learning, most of samples do not have a label y so we can not rely on it.
That is why, [Miyato 2018a] proposed to use a ’virtual’ label, i.e., the current label estimate from the
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classifier fθ(x). This approximation makes sense as at the end of the training, the current estimate should
be close to the true label when the number of data is large. Another strength of relying on fθ(x) is that
the quantity is defined even for unlabelled data. Since in VAT fθ(x) is taken as a label, it becomes a
constant that we refer to as f̂θ(x), leading to the following regularization term,

LVAT(x, fθ) = D(f̂θ(x), fθ(x+ ra)),
where ra = argmax

r,‖r‖≤ρ
D(f̂θ(x), fθ(x+ r)). (4.3)

Using fθ(x) instead of q(x) promotes a local uniformity in the predictions around each input. Thus, LVAT

can be seen as a measure (negative) of the local smoothness, or also as an estimation of the local Lispschitz
constant in the ρ neighborhood of x with respect to the metric D, hence a measure of complexity of the
function. The full regularization term of VAT is the expectation of LVAT over all samples,

RVAT(X, fθ) = 1
N

N∑
i=1

LVAT(xi, fθ). (4.4)

By penalizing large local changes in classification, the classifier should have a smooth local prediction,
thus giving the same label to data close to each other. This local spread of information should also spread
among the whole cluster, thanks to the semi-supervised hypothesis.

Adversarial samples computation. VAT requires an efficient computation of adversarial samples.
One could use the gradient with respect to the input but because of differentiability, it vanishes in r = 0.
When we approximate D in r = 0 through the second order Taylor expansion, we have

D(f̂θ(x), fθ(x+ r)) ∼
r=0

1
2r

tHrr. (4.5)

However, computing the HessianHr with respect to the input is costly. Instead we use an iterative method
to estimate the dominant Hessian’s eigenvector that represents the direction in which the classification
function will change the most. We use the power iteration method [Golub 2000, Chapter 6]. The algorithm
starts from a random normalized vector d and computes the gradient w.r.t ξd as follows:

d←− (∇dD(f̂θ(x), fθ(x+ ξd))−∇dD(f̂θ(x), fθ(x)))/ξ,

where ξ be a small real number. Since the second term is zero, we update the value of d with the calculated
gradient ∇dD(f̂θ(x), fθ(x+ ξd))/ξ. This operation is repeated tmax times, but the literature suggests
that only one iteration is sufficient to achieve state-of-the-art results [Miyato 2018a]. In practice, the value
of ξ is set to 10−6.

Once the adversarial direction d is defined, one can obtain the adversarial example with ra = ρd/‖d‖2,
by projecting onto the sphere of radius ρ. The adversarial samples follow the direction where the
classification function has the biggest variation w.r.t D.

4.3 Conclusion
We have presented a weakness of deep neural networks when they are trained in a classical manner for
classification problems: the adversarial examples. Adversarial examples are malicious data, which look
like training data, but are misclassified for a given pre-trained classifier. Thus they can be used to attack
the pre-trained classifier. We discussed the standard strategies to generate such examples, by input
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modification or by using GANs, and we reviewed the different concepts for attacking classifiers. We then
showed how the adversarial examples can be used to design a new training algorithm for neural networks
called adversarial training. Following this training strategy, virtual adversarial training was designed to
train a model in semi-supervised learning, a setting where only a few data have a label. For a given input,
VAT uses the current neural network prediction as a label and penalizes large changes in the prediction
for a perturbed version of the input.

In the next chapters, we introduce two contributions. The first contribution is an extension of the
VAT algorithm which uses an optimal transport loss in a learning with noisy labels scenario. We review
the label noise problems and the different lines of research to solve it. We then introduce our second
contribution and finally we evaluate it on different benchmarks. The second chapter is dedicated to the
generation of natural examples, training images which are misclassified, using GANs. We introduce a
simple and efficient reweighting strategy in order to give more importance to misclassified samples during
the training of GANs.
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In this chapter, we present the problem of learning with noisy labels problem and different lines of
research to solve this problem. We then present how adversarial training can be used in the context of noisy
labels. Next, we present our main contribution: using a Wasserstein loss in the virtual adversarial training
to promote local smoothness between very different classes and complex boundaries between classes similar
to each other. We also present the selection of an insightful ground cost. Afterwards, we extensively evaluate
our proposed method on different classical learning with noisy labels benchmarks. These contributions
have been published in IEEE Transactions on Pattern Analysis and Machine Intelligence [Fatras 2021a].

5.1 Learning with noisy labels
In this section, we first present the label noise problem, we also discuss the type of noise we consider for
labels and the related work.

5.1.1 Definition and setting

The learning with noisy labels setting shares a lot of similarities with supervised learning. Like the
supervised learning setting, we suppose that for each data x, we have access to its corresponding label y
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which encodes its class. The notable difference is that a portion of the label y are corrupted and encodes
the wrong class of x. For instance, an image of a bird whose label is a plane. Such labels are called noisy
labels. It is a common problem in practice since annotating large datasets is a challenging and costly
task, which is practically impossible to do perfectly for every task at hand. It is then most likely that
datasets will contain incorrectly labeled data, which induces noise in those datasets and can hamper
learning. Furthermore, the probability of facing this problem increases when the dataset contains several
fine grained classes that are difficult to distinguish [Schroff 2011,Krause 2016,Dubey 2018]. These noisy
labels are problematic because as pointed out in [Zhang 2017], deep convolutional neural networks have
huge memorization abilities and can learn very complex functions. That is why training a neural network
with noisy labels can lead to poor generalization [Arpit 2017,Wang 2018a,Choi 2018a]. We now discuss
the choice of noise setting we consider.

The label noise problem arises whenever some elements y do not match the real class of x. Several
scenarii exist: in the symmetric label noise, labels can be flipped uniformly across all classes, whereas
in the asymmetric label noise, labels y in the training set can be flipped with higher probability toward
specific classes. We note that the first scenario, while thoroughly studied in the literature, is highly
improbable in real situations: for example, it is more likely that an annotator mislabels two breeds of
dogs than a dog and a car. Hence, noise in labels provided by human annotators is not symmetric since
annotators make mistakes depending on class similarities [Misra 2016]. In the next section, we describe
the different lines of research to mitigate the influence of these noisy labels.

5.1.2 Related work on label noise

The label noise problem has been considered mainly in three ways in recent literature.
First are data cleaning methods: [Brodley 1999] uses a set of learning algorithms to create classifiers

that serve as noise filters for the training data. [Vahdat 2017,Xiao 2015,Li 2017b] learn relations between
noisy and clean labels before estimating new labels for training. In [Lee 2018], few human who verified
labels were necessary to detect noisy labels and adapt learning. Authors in [Natarajan 2013] use a simple
weighted surrogate loss to mitigate the influence of noisy labels. In [Jiang 2018,Ren 2018], the methods
rely either on a curriculum or on meta-gradient updates to re-weight training sets and downweight samples
with noisy labels.

Second are Transition probability-based methods: [Liu 2014,Menon 2015,Sukhbaatar 2014,Patrini 2017,
Hendrycks 2018] estimate a probability for each label to be flipped to another class and use these
estimations to build a noise transition matrix. In [Sukhbaatar 2014], the authors add an extra linear layer
to the softmax in order to learn the noise transition matrix itself, while [Hendrycks 2018] uses a small
set of clean validation data to estimate it. [Patrini 2017] proposes a forward/backward loss correction
method, which exploits the noise transition matrix to correct the loss function itself.

Third are regularization-based methods: In [Reed 2015,Ma 2018], the authors use a mixture between
the noisy labels and network predictions. In [Tanaka 2018a,Kun 2019a], the regularization is achieved
by alternatively optimizing the network parameters and estimating the true labels while the authors
of [Han 2018,Yu 2019,Hongxin 2020] propose peer networks feedbacking each other about predictions for
the noisy labels. [Song 2019] proposes to replace noisy labels in the mini-batch by the consistent network
predictions during training, while [Chen 2019] proposes noisy cross-validation to identify samples that
have correct labels. In [Wang 2019, Zhang 2018b,Ghosh 2017], robust loss functions are proposed to
overcome limitations of cross entropy loss function. Our proposed method follows this strategy where the
regularization promotes local smoothness to fight the label noise influence and it is the topic of the next
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section.

5.2 Wasserstein Adversarial Regularization for label noise
In this section, we present how we can use the Virtual Adversarial Training algorithm to tackle the label
noise problem but discuss some limits. We then introduce an optimal transport based extension of VAT
which corrects these limits.

5.2.1 Adversarial regularization: smoothing local predictions

To prevent a classifier to overfit on noisy labels, we would like to regularize its decision function in areas
where the local uniformity of training labels is broken, i.e., when some labels are under represented in
specific data area. To achieve such desired local uniformity, robust optimization can be used. This amounts
to enforce that predicted labels are uniform in a local neighborhood Ui of data point xi. This changes the
total loss function in the following way:

arg min
θ

N∑
i=1

max
xu
i
∈Ui

LCE(fθ(xui ),yi) (5.1)

Because the robust optimization problem [Caramanis 2011] in (5.1) is hard to solve exactly, adversarial
training [Goodfellow 2015,Shaham 2015] was proposed as a possible surrogate. Instead of solving the max
inner problem, it suggests to replace it by enforcing uniformity in the direction of maximum perturbation,
called the adversarial direction as presented in Section 4.1. Mainly used for robustness against adversarial
examples, adversarial training has been successfully used in semi-supervised learning with the Virtual
Adversarial Training algorithm presented in Section 4.2.2. Thus to solve the label noise problem, we
propose to use the VAT regularization. The optimized loss is then

Ltot(xi,yi, fθ) = LCE(fθ(xi),yi) + ηRVAT(xi, fθ), (5.2)

Where like in VAT, fθ(xi) is the neural network prediction of the input and fθ(xi + ra) is the neural
network prediction of the adversarial input. A sound choice for D can be the Kullback-Leibler (KL)
divergence. RVAT promotes local uniformity in the predictions without using the potentially noisy label yi:
therefore, it reduces the influence of noisy labels, since it is computed from the prediction fθ(xi) that can
be correct when the true label is not. Our regularization shares strong similarities with Virtual Adversarial
Training (VAT) [Miyato 2018a], at the notable exception that we do not consider a semi-supervised
learning problem and that we regularize on the labeled training positions xi, where VAT is applied on
unlabeled samples. Thus we call this framework AR which stands for Adversarial Regularization. It can
be shown that this regularization acts as a label smoothing technique:

Proposition 6. Let D be the Kullback-Leibler divergence. Let γ = η
η+1 ∈ [0, 1[. Let ya = fθ(x+ ra) be

the predicted adversarial label. Let H be the entropy. The regularized learning problem Ltot(x,y, fθ) in
(5.2) is equivalent to :

Ltot(x,y, fθ) ≡ LCE(fθ(x), (1− γ)y + γya)− γH(ya).

Proof. The total learning loss for one sample (x,y) is:

Ltot(x,y, fθ) = LCE(fθ(x),y) + ηRAR(x, fθ). (5.3)
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We write the RAR regularization as:

RAR(x, fθ) = DKL(fθ(x+ ra), fθ(x)),
where ra = argmax

r,‖r‖≤ρ
DKL(fθ(x+ r), fθ(x)). (5.4)

We have that:

DKL(fθ(x+ ra), fθ(x)) =
∑
c

fθ(x+ ra)(c) log fθ(x+ ra)(c)

fθ(x)(c)

=
∑
c

fθ(x+ ra)(c) log fθ(x+ ra)(c) −
∑
c

fθ(x+ ra)(c) log fθ(x)(c)

= −
∑
c

fθ(x+ ra)(c) log fθ(x)(c) −H(fθ(x+ ra)). (5.5)

where H is the entropy function. Consequently, the total loss can be rewritten as:

Ltot(x,y, fθ) =−
∑
c

(y(c) + ηfθ(x+ ra)(c)) log fθ(x)(c) − ηH(fθ(x+ ra)) (5.6)

Here η ∈ R+. Let η = ε
1−ε with ε ∈ [0, 1[. We have the following equivalence:

(1− ε)Ltot(x,y, fθ) = −
∑
c

((1− ε)y(c) + εfθ(x+ ra)(c)) log fθ(x)(c) − εH(fθ(x+ ra))

= LCE(fθ(x), (1− ε)y + εfθ(x+ ra))︸ ︷︷ ︸
Interpolated label

−ε H(fθ(x+ ra))︸ ︷︷ ︸
adversarial label entropy

(5.7)

This leads to the following interpretation: instead of learning over the exact label or over a mix
between the exact label and the network prediction, we learn over an interpolation between the data
yi and the adversarial label yai , while maximizing the entropy of the adversarial label (i.e. blurring
the boundaries of the classifier). Note that label smoothing techniques are known to create cluster of
classes in the penultimate layer of the neural network [Müller 2019], thus leading to appealing behaviour
in the presence of noisy labels. Related developments can be found in adversarial label smoothing
(ALS) [Shafahi 2018,Goibert 2019], which aims at providing robustness against adversarial attacks.

Yet, one of the major limit of this approach is that the regularization is conducted with the same
magnitude between all classes without considering potential class similarities. As a consequence, a strong
regularization can remove the label noise, but also hinder the ability of the classifier to separate similar
classes where a complex boundary is needed. In the next section we present how we overcome this issue.
We propose to replace D by a geometry-aware divergence taking into account the specific relationships
between the classes for the classifier to not overfit on noisy labels when the classes are significantly
different and to have complex boundaries when they are similar. Taking these relations into account avoid
overfitting on noisy labels between dissimilar class, while allowing complex boundaries between classes
with high similarities.

5.2.2 Wasserstein adversarial regularization to consider class similarities

To make the divergence aware of specific relationships between classes, we replace the "isotropic" divergence
D with an optimal transport cost computed in the labels space. We name our proposed method Wasserstein
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Adversarial Regularization. In a related way, [Frogner 2015] used the Wasserstein distance as a loss in
a learning system between the output of the model for multi-label learning as detailed in Section 3.1.1.
In this setting, OT can be computed because in multi-class problem, the classifier output and the label
are probability measures. Note that the computational complexity of exact OT scales with respect to
the number of classes instead of the number of data as main OT applications, i.e., the complexity is
O(n3

C log(nC)). In classical learning with noisy labels benchmarks, the number of classes can go up to
1000 classes. The interest of optimal transport is to take into consideration the geometry of the label
space. We define the proposed regularization term RWAR as follows:

RWAR(xi) = Lε(fθ(xi + rai ), fθ(xi),C)
with rai = argmax

ri,‖ri‖≤ρ
Lε(fθ(xi + rai ), fθ(xi),C). (5.8)

In practice, we will use the solution of the sharp entropic variant of the optimal transport problem
[Cuturi 2013,Luise 2018]:

Lεsharp(fθ(xi + rai ), fθ(xi),C) = 〈Π∗ε,C〉
with Π∗ε = argmin

Π∈U(fθ(xi+rai ),fθ(xi))
〈Π,C〉 − εH(Π)

Using this regularized version has several advantages similar to the entropic-regularized OT that we
recall: i) it lowers the computational complexity to near-quadratic [Altschuler 2017], ii) when ε > 0 , it
turns the problem into a strongly convex one, which makes the OT loss differentiable with respect to the
input measures [Peyré 2019, proposition 4.6], iii) it allows to vectorize the computation of all Wasserstein
distances in a batch, which is particularly appealing for training deep neural nets and finally iv) it is a
better approximation than the entropic-regularized OT [Luise 2018]. Based on [Genevay 2018], we use
the AutoDiff framework, which approximates the derivative of this regularization with a fixed number
of iterations of the Sinkhorn algorithm. We recall that using a large ε results in smoothing the loss and
speeds up the Sinkhorn algorithm, but drives the solution away from the true OT solution. As such,
we recommend to use a small ε to stay as close as possible to the true OT loss. Note that for all the
experiments in the main task, we have used same regularization parameter (ε = 0.05) with 20 Sinkhorn
iterations, to illustrate that, while the regularization parameter is important, it is not too sensitive across
datasets. To summarize, for each data in a batch, we compute the OT between the input data network
prediction and the adversarial input data network prediction. Hence the OT complexity is of order
O(m× ns × n2

C), where m is the batch size, ns the computation budget and nC the number of classes.
We compare the computation time of our method in the experimental section. The full model update
using WAR can be found in Algorithm 3.

Choice of ground cost. The ground cost C reflects the geometry of the label space. It bridges the
gap between AR and WAR. An uninformative 0-1 ground cost, i.e. 0 over the diagonal and 1 everywhere
else, would give the total variation (TV) loss (Remark 2.26 in [Peyré 2019]), which could also be used as
D in the AR framework. Below, we refer to this special case as WAR0−1. To define a C matrix encoding
class relationships, multiple choices are possible. Relying on expert knowledge, one could set it manually,
but this becomes unpractical when a large number of classes is present, and this knowledge is not always
available, or even prone to errors. We propose two variants to estimate the ground cost:

• In absence of prior information about the nature of the source of labelling errors, we first propose to
rely on semantic distances based on word embeddings such as word2vec [Mikolov 2013]. Similarities
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Algorithm 3 Wasserstein Adversarial Training (WAT) model update
1: Inputs: x,y, ρ, ξ, η, ε, θt, γ, kmax, ground cost C
2: Select sample (x,y)
3: Random d ∈ Rd

4: for k=1, · · · , kmax do
5: r = ξ ∗ d/‖d‖2
6: d←− ∇rLε(f̂θt(x), fθt(x+ r),C)/ξ
7: end for
8: ra = ρd/‖d‖2
9: LWAR(xi, fθt) = Lε(f̂θt(x), fθt(x+ ra),C)

10: return θt+1 = θt − γ∇θt
(
LCE(fθt(xi),yi) + ηLWAR(xi, fθt)

)
between classes are then defined via Euclidean distances in the embedding space, as proposed
in [Frogner 2015]. Finally, as our method requires large values of the cost between similar classes, we
apply the function e−δ (where δ is the Euclidean distance between the two class names) element-wise
and set the diagonal of C to 0. We denote it WARw2v;

• Our second ground cost computation relies on the distance between mean of embedded data. We
use a pre-trained neural network (details given in experimental section) to embed data and calculate
the distance between mean of each class. The rationale is that two close classes, in terms of their
mean distances, should be harder to distinguish, and as such the method should allow for a complex
boundary to discriminate them. We denote it WARembed.

While both options are only approximations of the difficulty to discriminate two classes, we show in the
experimental section that they nonetheless provide better results than the uninformative 0-1 cost and
random standard normal ground cost matrices. Note that we considered pre-calculated and static ground
costs. Updating dynamically the ground cost might be an interesting research direction as future work.
Other application dependent options could be designed with respect to the problem at hand. We finally
note that estimating the ground cost C could be very interesting but, despite some recent progress in
metric learning for OT [Cuturi 2014,Huang 2016,Li 2019], adapting them for WAR is a difficult task, and
it would be prone to overfitting due to the presence of label noise in the data.

Function smoothness and ground metric. Now we discuss how the proposed regularization term
regularizes the model fθ with a smoothness controlled by the ground metric C. It is not possible to extend
the label smoothing in Proposition 6 to WAR because the OT cost does not admit a close form solution,
but we can still show how RWAR promotes label smoothness. To this end, we look at the regularization
term Lεsharp(f̂θ(x), fθ(x+ r),C) for a given sample x and a pre-computed r. We can prove the following
proposition:

Proposition 7. Minimizing RWAR with a symmetric cost C such that Ci,i = 0,∀i is equivalent to
minimizing an upper bound of a weighted total variation (TV) norm between fθ(x) and fθ(x+ r).

cTV (fθ(x), fθ(x+ r)) ≤
∑
k

ck|fθ(x)k − fθ(x+ r)k| ≤ Lεsharp(fθ(x), fθ(x+ r),C), (5.9)

where ck = mini,i 6=k ck,i is the minimal off-diagonal cost for row k of C and c = mink ck is a global
minimum out of the diagonal.



5.2. Wasserstein Adversarial Regularization for label noise 57

Proof. We aim to prove the following relations for two probability measures α and β that

cTV (α, β) ≤
∑
i

ci|ai − bi| ≤ Lεsharp(α, β, c).

It is well known and obvious from [Cuturi 2013,Luise 2018] that the optimal OT matrix of regularized
OT, Π?

ε, leads to a larger OT loss than the exact OT solution Π?. This means that

WC(α, β) = 〈Π?,C〉 ≤ 〈Π?
ε,C〉 = Lεsharp(α, β, c) (5.10)

and the relation is strict when ε > 0.
Now if we suppose that the cost matrix is symmetric and Ci,i = 0 and Ci,j > 0 when i 6= j then solving
OT means that the maximum amount of mass on the diagonal of Π? since it leads to a 0 cost. Under
constraints U(α, β) this maximum amount is equal to Π?

i,i = min(ai, bi),∀i. This implies that for a given
row i in Π? the amount of mass not on the diagonal row i is

∑
j 6=i Π?

i,j = max(ai − bi, 0) because of the
left marginal constraint in U . Note that a similar result can be expressed with the column j such that the
mass not on the diagonal of column j is

∑
i 6=j Π?

i,j = max(bj − aj , 0). This obviously means that for a
given column/row index k we have

∑
i 6=k Π?

i,k + Π?
k,i = |ak − bk|.

Let’s write Ak =
∑
i≥k,j≥k T

?
i,jCi,j . We have that WC(α, β) = A1. Now we remark that

Ak −Ak+1 ≥ ck|ak − bk|.

We can write that
A1 = A1 −

∑
k=2

Ak +
∑
k=2

Ak.

Since AN = 0 because CN,N = 0, it turns out that A1 =
∑
k=1(Ak − Ak+1). Lower bounding every

elements of the sum by the previous minoration gives that:

A1 =
∑
k=1

(Ak −Ak+1) ≥
∑
k=1

ck|ak − bk| ≥ cTV (α, β), (5.11)

which gives the desired results.

By minimizing the proposed RWAR regularization with r belonging in a small ball around x, we
actually minimize a local approximation of the Lipschitz constant of fθ. This has the effect of smoothing-
out the model around x and makes it more robust to label noise. One can see the effect of the cost
matrix in the center term of (5.9), where the values in the ground metric correspond to a weighting of a
total variation, hence controlling the effect of the regularization and the adversarial direction r during
adversarial computation. Interestingly, the Wasserstein distance can be bounded both below (c) and
above (c̄) by Total Variation and weighted total variation similarly to the equation above. Finally, in
practice we minimize the expectation of the OT loss, which means that we will penalize areas of high
density similarly to a regularization with the Sobolev norm (i.e. penalizing the expected norm of the
model gradient [Mroueh 2018]), while keeping a finer control of the class relations, since we use the ground
loss C that promotes anisotropy. After demonstrating and discussing the theoretical advantages of our
method, we illustrate it on a toy experiment.

Illustration of the effect of RWAR We illustrate AR and WAR in a simple toy 3-classes classification
problem using the Scikit-learn library [Pedregosa 2011a] with noise in Figure 5.1.

Each column of the figure corresponds to a divergence function D. The top row illustrates the values
on the simplex, while the bottom row shows the classification predictions when using D as adversarial
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Figure 5.1: Illustration of the regularization geometry for different losses in the adversarial training. (Top)
Regularization values on the simplex of class probabilities. Each corner stands for a class. All losses are computed
with respect to a prediction represented as the green x. Colors are as follows: white is zero while darker is bigger.
In the case of WAR, the ground cost C is given on the left. (Down) Classification boundaries when using these
losses for regularization. The unregularized classifier (CCE) is given on the left.

regularization. From left to right, we compare the effect of training with the cross entropy alone (CCE,
no regularization), RWAR with ε = 0.1 and ε = 0.05, as well as RAR with TV (that is the same as RWAR

with 0 − 1 loss), KL (as used in VAT [Miyato 2018a]) and L2 divergences as D. For the classification
problem, we generated two close classes (in orange and red), as well as a third (in black), which is far
from the others. Then, we introduced noisy labels (of the black class) in the region of the red class.

On this toy example, CCE overfits the noisy black labels, yet is able to distinguish the red and orange
classes. The RAR regularizers, being class agnostic, correct for the noisy black labels in the bottom part,
but smooth the complex decision function between the orange and red classes. On the contrary, RWAR

uses a different cost per pair of classes, illustrated in the top left panel of Figure 5.1: the smallest cost
is set between the red and black classes, which has the effect of promoting adversarial examples in that
direction. This cost / smoothing relation is due to the fact that our problem is a minimization of the OT
loss: in other words, the higher the cost between the classes, the less the binary decision boundary will be
smoothed. Finally, the effect of the global ε parameter can also be appreciated in the classification results:
while using ε = 0.05, the smoothing of the loss is decreased and the final decision boundary between the
mixed classes keeps all its complexity.

5.3 Numerical experiments on learning with noisy labels and openset
noise

We evaluate the proposed approach WAR on both image classification and semantic segmentation tasks.
We first showcase the performance of WAR on a series of image classification benchmarks (Section 5.3.1),
and then consider two real-world cases: first, the classification of clothing images from online shopping
websites (Section 5.3.2) and then the semantic segmentation of land use in sub-decimeter resolution aerial
images (Section 5.3.3). We also evaluated our method in the context of openset noise which consists to have
image whom labels are not encoded, for instance non digit images in the MNIST dataset (Section 5.3.4).
Following the community evaluation strategies, we used WAR on four different architectures depending on
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benchmarks. On each benchmark, WAR outperformed state-of-the-art competitors showing the robustness
of our methods on the used architectures. The code can be found here∗.

5.3.1 Image classification on simulated benchmark datasets

Table 5.1: Test accuracy (%) of different models on Fashion-MNIST (F-M), Cifar-10, and Cifar-100 datasets with
varying noise rates (0% – 40%). The mean accuracies and standard deviations averaged over the last 10 epochs of
three runs are reported, and the best results are highlighted in bold.
Data / noise CCE Backward Forward Unhinge Bootsoft CoTeaching CoTeaching+ D2L SL Pencil JoCoR WARw2v

[Patrini 2017] [Patrini 2017] [Rooyen 2015] [Reed 2015] [Han 2018] [Yu 2019] [Ma 2018] [Wang 2019] [Kun 2019b] [Wei 2020] Ours

F-M

0% 94.69±0.11 94.86±0.04 94.81±0.04 95.12 ± 0.03 94.79±0.02 94.28±0.04 93.62±0.01 94.47±0.02 94.18±0.04 93.19 ± 0.23 94.60 ± 0.04 94.70±0.02
20% 89.02±0.47 88.84±0.10 91.03±0.12 90.04± 0.08 88.17±0.11 91.24±0.06 92.26±0.02 89.12±0.15 93.36±0.03 92.50 ± 0.09 91.01 ± 0.08 93.37±0.08
40% 78.85±0.56 81.74±0.08 82.85 ±0.2 78.32 ±0.15 73.84±0.28 86.83±0.10 86.15±0.03 78.98±0.25 86.83±0.07 90.17 ± 0.03 84.86 ± 0.20 90.41±0.02

Cifar-10
0% 91.76±0.04 91.63 ± 0.04 91.59 ± 0.03 92.27 ± 0.04 91.67 ± 0.03 90.12 ±0.04 88.47±0.14 91.29±0.02 90.48±0.05 87.90 ± 0.39 91.94 ± 0.02 91.88±0.31
20% 85.26±0.09 84.67 ± 0.1 85.70 ± 0.08 87.09 ± 0.05 85.35 ± 0.8 86.19 ±0.07 82.97±0.25 86.64 ±0.12 87.51±0.06 87.09 ± 0.25 87.93 ± 0.09 89.12±0.48
40% 76.23±0.15 73.49 ± 0.14 75.10 ± 0.15 77.94 ± 0.1 74.32 ± 0.2 80.87±0.09 72.65±0.10 73.12 ±0.43 76.87±0.12 84.48 ± 1.04 82.07 ± 0.11 84.76±0.25

Cifar-100
0% 68.60±0.09 69.53±0.07 70.12±0.07 70.54±0.06 69.81±0.04 65.42±0.06 58.93±0.14 70.93 ±0.02 68.27±0.06 63.32 ± 0.24 69.29 ± 0.26 68.16±0.18
20% 58.81±0.10 59.23±0.08 59.54±0.05 61.06±0.06 58.97±0.08 56.55±0.08 44.88±0.14 60.90±0.03 58.41±0.08 59.05 ± 0.34 60.43 ± 0.07 62.72±0.16
40% 42.45±0.12 43.02±0.09 42.17±0.1 42.87±0.07 41.73±0.08 42.73±0.08 29.94±0.34 42.61±0.04 40.97±0.12 45.70 ± 0.67 42.26 ± 0.45 58.86±0.21

Avg,. rank 7.7 6.9 6.2 4.2 8.1 7.1 10.1 6.7 7.0 6.2 5.0 2.5
noise only 8.8 8.2 7.1 5.6 10.0 5.8 9.5 7.3 6.0 3.5 5.0 1.0

Datasets and noisy labels simulations We consider three image classification benchmark datasets:
Fashion-MNIST (F-M) [Xiao 2017], and CIFAR-10 / CIFAR-100 [Krizhevsky 2009]. Fashion-MNIST
consists of 60′000 gray scale images of size 28× 28 with 10 classes. CIFAR-10 and CIFAR-100 consist of
50′000 color images of size 32× 32 covering 10 and 100 classes, respectively. Each dataset also contains
10′000 test images with balanced classes.

Since we want to evaluate robustness to noisy labels, we simulated label noise in the training data
only. For all datasets, we introduced 0%, 20% and 40% of noise in the labels. We considered only
asymmetric noise, a class-conditional label noise where each label yi in the training set is flipped into
yj with probability Pi,j . As described above, asymmetric noise is more common in real-world scenarios
than symmetric noise, where the labels are flipped uniformly over all the classes. For CIFAR-10 and
CIFAR-100, we follow the asymmetric noise simulation setting by [Patrini 2017], where class labels are
swapped only among similar classes with probability p (i.e. the noise level). For Fashion-MNIST, we
visually inspected the similarity between classes on a t-SNE plot of the activations of the model trained
on clean data; we then swapped labels between overlapping classes (→: one-directional swap, ↔ mutual
swap): DRESS → T-SHIRT/TOP, COAT ↔ SHIRT, SANDAL → SNEAKER, SHIRT → PULLOVER,
ANKLE BOOT → SNEAKER.

Baselines We compared the proposed WAR with an informative C matrix based on the word2vec
embedding (WARw2v) against several state-of-the-art methods: Unhinged [Rooyen 2015], Bootstrapping
[Reed 2015], Forward and Backward loss correction [Patrini 2017], Dimensionality driven learning
(D2L) [Ma 2018], Co-Teaching [Han 2018], Co-Teaching+ [Yu 2019], Symmetric cross entropy (SL)
[Wang 2019], Pencil [Kun 2019b] and finally JoCoR [Wei 2020]. We then compare WARw2v with WARembed,
AR and WAR0−1. Finally, as a baseline for all the considered methods we also included a categorical cross
entropy (CCE) loss function. All the methods shared the same architecture and training procedures, as
detailed below.

∗https://github.com/bbdamodaran/WAR
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Table 5.2: Comparison of variants of WAR with AR with varying noise rates (0% – 40%). The mean accuracies
and standard deviations averaged over the last 10 epochs of three runs are reported, and the best results are
highlighted in bold.
Methods Fashion-MNIST CIFAR-10 CIFAR-100

0% 20% 40% 0% 20% 40% 0% 20% 40%

AR 94.81±0.09 93.10±0.14 89.74±0.10 91.49±0.07 88.91±0.09 81.98±0.25 67.83±0.10 65.44±0.11 55.75±0.14
WAR0−1 94.60±0.03 90.99±0.07 86.03±0.20 90.94±0.12 86.12±0.21 74.15±0.34 65.78±0.15 60.56±0.14 51.00±0.31
WARw2v 94.70±0.02 93.37±0.08 90.41±0.02 91.88±0.31 89.12±0.48 84.76±0.25 68.16±0.18 62.72±0.16 58.86±0.21
WARembed 94.63±0.09 93.25±0.15 90.20±0.36 91.88±0.12 89.93±0.02 85.08±0.32 66.58±0.21 62.82±0.76 55.79±0.25

Model Similarly to other works [Han 2018,Miyato 2018a], we used a 9 layer CNN for the three image
classification benchmark datasets: Fashion-MNIST, CIFAR10, and CIFAR100 as shown in Table 5.3.
Between each layer we use a batch norm layer, a drop-out layer and a leaky-relu activation function with
slope of 0.01. We use the Adam optimizer for all our networks with an initial learning rate of 0.001 with
coefficient (β1, β2) = (0.9, 0.999) and with mini-batch size of 256. The learning rate is divided by 10 after
epochs 20 and 40 for Fashion-MNIST (60 epochs in total), after epochs 40 and 80 for CIFAR-10 (120
epochs in total), and after epochs 80 and 120 for CIFAR-100 (150 epochs in total). While training WAR,
we set η = 0 for 15 epochs for faster convergence, as we observed that the network does not overfit on
noisy labels at early stages of training. The input images are scaled between [-1, 1] for Fashion-MNIST,
and mean subtracted for the CIFAR10, and CIFAR100 datasets before feeding into the network. The
proposed method WAR, AR, and cross entropy loss functions are implemented in PyTorch, and for the
JoCoR†, Pencil‡, Co-teaching§, Co-teaching+¶, SL‖ method we used the PyTorch code provided by the
authors. For the rest of the state-of-the-art methods (dimensionality driven learning∗∗, forward, backward
loss correction and robust loss functions ††: unhinged and boot strapping) the experiments are conducted
using the Keras code provided by respective authors. We used similar layer initialization for all the
methods in Pytorch and Keras.

For WARw2v, we set the hyper-parameters η= 10, ε= 0.05, and ρ= 0.005 for all the datasets. The
hyper-parameters of the baselines are set according to their original papers. The noise transition matrix for
the Forward and Backward method is estimated from the model trained with cross entropy [Patrini 2017].

Results Classification accuracies are reported in Table 5.1. Results show that WARw2v consistently
outperforms the competitors by large margins, across noise levels and datasets. In particular, WARw2v

achieved improvements of 2-3% points on fashion-MNIST/CIFAR-10, and 15% on CIFAR-100 at the
highest noise level. This demonstrates that the inclusion of class geometric information during training
mitigates the effect of over-fitting to noisy labels. On the most noisy datasets, the most competitive
method with WARw2v is Pencil, however Pencil tends to decrease the performance when the dataset has a
smaller percentage of noisy labels which is not the case of our method. Besides WARw2v and Pencil, JoCoR,
Unhinged, Co-Teaching, and SL also performed well. The Forward and Backward method performed
slightly better than CCE, which is most likely due to the burden in accurately estimating the noise transition
matrix. It is noted that Co-Teaching uses true noise estimate, and the accuracy might drop if the noise

†https://github.com/hongxin001/JoCoR
‡https://github.com/yikun2019/PENCIL
§https://github.com/bhanML/Co-teaching
¶https://github.com/xingruiyu/coteaching_plus
‖https://github.com/YisenWang/symmetric_cross_entropy_for_noisy_labels

∗∗https://github.com/xingjunm/dimensionality-driven-learning
††https://github.com/giorgiop/loss-correction
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Fashion-MNIST CIFAR-10 CIFAR-100
28×28×1 32×32×3 32×32 ×3

3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
2×2 max-pool, stride 2

dropout, p=0.25
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
2×2 max-pool, stride 2

dropout, p=0.25
3×3 conv, 512 LReLU
3×3 conv, 256 LReLU
3×3 conv, 128 LReLU

avg-pool
dense 128 → 10 dense 128 → 10 dense 128 → 100

Table 5.3: CNN models used in our learning with noisy label experiments on Fashion-MNIST, CIFAR-10 and
CIFAR-100.

ratio is estimated directly from the noisy data. Furthermore, performance of Co-Teaching+‡‡ is surprising
lower than the one of Co-Teaching on two datasets, in contrast to the observations in [Yu 2019]. From
our experiments, we observed that Co-Teaching+ underperforms when the noise is class-dependent and
the model considered has a wide capacity.

Importance of encoding class relationships to better assess the significance of including class
relationships and to study informative cost matrices, we compare WAR in three settings: 1) WAR0−1: a
version of WAR with an uninformative 0-1 ground cost (the cost matrix is a matrix of ones, except for the
diagonal); 2) WARw2v: the version of WAR with the ground cost defined by word2vec embedding (as in
all other experiments in this chapter); and 3) WARembed: a version of WAR with a ground cost defined by
similarity across classes obtained by off the shelf CNNs.

WARembed is computed as follows: After embedding our data with a pre-trained ResNet18 [He 2016],
we compute each class centroid (which is an imperfect statistic, as belonging to one class is determined
from potentially noisy labels), then we compute the distance between them. Finally, we apply the same
exponential trick as for WARw2v. The intuition behind WARembed is the following: when classes are close
(similar) in a relevant embedding, the noisy labels will lead to closer class centroids. Here the pretrained
neural network can be seen as generic feature extractor used to assess class similarity only, similarly
to [Damodaran 2018,Damodaran 2020]. Note that for Fashion-MNIST, we computed the centroids directly
in the original data space. We also compared the performance of our ground costs against 20 standard
normal cost matrices drawn randomly: in all cases, our proposed ground costs were ranked at the first and
second positions, showing the relevance to have a good crafted ground cost. Finally, we also compare these
results against AR using KL divergence. We used η=5 and ρ = 0.005 (similarly to WAR approaches), and
followed the WAR training procedure. Table 5.2 reports the performance of WARw2v, WARembed, WAR0−1 and AR,

‡‡We used the code provided by the authors: https://github.com/xingruiyu/coteaching_plus
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η AR WAR0−1 WARw2v WARembed

0.5 77.49±0.18 76.80±0.22 77.05±0.36 76.96 ± 0.15
1 77.25±0.25 76.35±0.21 76.90±0.37 77.00 ± 0.31
5 81.37±0.21 74.76±0.15 80.16±0.36 83.13 ± 0.12
10 76.84±0.84 74.14±0.16 84.76±0.25 85.08 ± 0.32
20 57.36±0.10 75.58±0.18 86.73±0.20 80.36 ± 0.22

Table 5.4: Test accuracy (in %) of adversarial regularization methods: AR, WAR0−1, WARw2v and WARembed with
different η values on CIFAR-10 dataset with 40% noise level. The average accuracies and standard deviations over
last 10 epochs are reported for one run.

and shows that WARw2v is consistently better than AR and WAR0−1 (except in one case), and outperformed
AR significantly by a 2-3% margin at the highest noise level. When looking at the two encodings of the
C matrix, WARembed and WARw2v results are on par most of the time with the word2vec encoding showing
better performances on Fashion-MNIST and CIFAR-100 and the CNN embedding being slightly better
on CIFAR-10. These results show that both embeddings are senseful and provide good priors against
the label noise. We found the word2vec embedding a good choice in our experiments, especially because
they can be applied widely according to the semantics of the classes, while WARembed needs access to a
meaningful pre-trained model, which can be complicated depending on the problem (e.g. for semantic
segmentation or other less mainstream tasks than image classification). Regarding computation time,
all experiments were performed on a single GPU GTX TITAN. For one epoch on the CIFAR10 dataset,
WARembed took 187 seconds, AR took 165 seconds and the usual cross-entropy loss took 57 seconds. We
recall that in WAR the quadratic complexity of the Wasserstein distance [Altschuler 2017] only applies to
the number of classes and stays of linear complexity w.r.t. the number of samples, hence the effect of
WAR to the computational burden is relatively small. Thus the replacement of the KL divergence by the
Wasserstein distance is of the same order of complexity. To demonstrate this point, we trained WAR and AR
on the imagenet32 dataset with clean labels and the 9 layer CNN network. This dataset has 1000 classes
and more than 1.2M 32× 32 images. On average per epoch, the AR method took 1409 seconds, while WAR
method took 1712 seconds, so it is only 20% more computationally expensive.

Sensitivity analysis of η: We conducted an experimental study to analysis the sensitivity of the
trade-off parameter (η) between the cross entropy and the adversarial regularization term on CIFAR-10
dataset with 40% noise level. The experimental results with different values of η are shown in Table 5.4
and the result reveals that as η increases, AR, WARembed and WARw2v are robust to the label noise. However
for the higher η, AR and WARembed do over-smoothing and decreases the classification accuracy. On the
other hand, WARw2v increases the accuracy as η increases. This behaviour shows the capability of our
proposed method WARw2v to preserve the discrimination capability between similar classes. It is noted that
WARw2v points the gradient direction towards the low cost classes, as a result it does not over smooths
between the conflicting classes, thus maintaining the discrimination ability. Furthermore, WAR0−1 with
uninformative ground cost did not provide better results, and it is mostly similar with different values of
η. This observation reinstates need of having meaningful ground cost to capture the relationship between
the classes in the dataset, and to guide gradient direction with respect to the ground cost.

In this section, we evaluated our method on standard benchmarks where we simulated the label noise
ourselves. We also reviewed the proof of concept on the importance to choose a good ground cost and
made a sensitivity analysis. In the next section, we evaluate our method on a real-world dataset which
contains label noise.
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Table 5.5: Test accuracy of different models on Clothing1M dataset with ResNet-50. (*) refers to results reproduced
by us. (†) means WARw2v result at the epoch showing the best validation accuracy assessed on the clean validation
set.

Unsupervised Using yval

Method CCE CCE bootsoft D2L GCE SL JoCoR WARw2v Forward JOF Pencil WARw2v

[Wang 2019] (*) [Rooyen 2015] [Ma 2018] [Zhang 2018b] [Wang 2019] (*) Unsup. [Patrini 2017] [Tanaka 2018b] (*) (†)

Acc. 68.80 68.65 68.94 69.47 69.75 71.02 69.78 71.61 69.84 72.16 69.66 72.20

5.3.2 Image classification on real-world noisy label benchmark datasets

Dataset In this section, we demonstrate the robustness of WARw2v on a large scale real-world noisy label
dataset, Clothing1M [Xiao 2015]. The Clothing1M dataset contains 1 million images of clothing obtained
from online shopping websites and has 14 classes. The labels have been obtained from text surrounding the
images and are thus extremely noisy. The overall accuracy of the labels has been estimated to ≈61.54%.
The dataset also contains additional manually refined clean data for training (50k samples), validation
(14k) and testing (10k). We did not use the clean training and validation data in this work, as WARw2v

assumes clean labels are unavailable (which is generally a more realistic assumption). Nonetheless, we
report the results obtained using the model from the epoch with the lowest validation error, calculated on
the clean validation set (last column of Table 5.5) to show how close to it our unsupervised strategy can
get and to compare with recent methods (e.g. [Tanaka 2018b]). Clean test data was only used to evaluate
the performance of the different approaches when learning with label noise.

Experimental setup and Results Similar to [Patrini 2017,Wang 2019], we used ResNet-50 pre-trained
on ImageNet for a fair comparison between methods. For WARw2v, the hyperparameters are similar to those
of the previous experiment, except ρ = 0.5. Regarding the training procedure for the Clothing1M dataset
we give the following details. Data pre-processing includes resizing the image to 256 x 256, center cropping
a 224 x 224 patch from the resized image, and performing mean subtraction. We used a batch size of
64 and learning rate of 0.002 to update the network with Stochastic Gradient Descent (SGD) optimizer
with a momentum of 0.9, and weight decay of 0.001. The learning rate is divided by 10 after 5 epochs
(10 epochs in total). We set ρ = 0.5 and divided by 10 (after 5 epochs) when the training loss is not
decreasing. For [Kun 2019b], the first stage was for three epochs with step size of 2e−3, the second for 6
epochs with step size 2e−4, and the last stage was for 6 epochs with step size 2e−5. For JoCoR [Wei 2020],
we got better results by setting the learning rates as follows: we use the step size 2e−3 for the three first
epochs, then we divided it by 10 for 6 epochs and finally used 2e−5 for the remaining 6 epochs.

For fairness of comparison, we only selected the methods which are similar to ours (robust loss
functions), and which have the similar training methods (optimizer, learning rate, batchsize, epochs)
and architectures. We compared WARw2v against the competitors from [Patrini 2017,Wang 2019], and
also reproduced the CCE accuracy by our own experiments. Results are reported in Table 5.5 and our
method achieved the highest performance compared to all the baselines. Note that Forward uses a mix
of noisy and clean labels to estimate the noise transition matrix, while JOF and WARw2v(†) use clean
validation labels only to report the test accuracy with respect to the best validation score. This shows the
competitive advantage of our method.

In this section we evaluated WAR on a real-world clothing images where it achieved state-of-the-art
results. In the next section, we applied our method on semantic segmentation with real-world remote
sensing data.
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Figure 5.2: Comparison of the original and the corrupted ground truths for the semantic segmentation experiment.

Figure 5.3: Semantic segmentation maps obtained on the test set of the ISPRS Vaihingen dataset (tile #12 of the
original data). The top row shows the full image, and the second row shows a close-up of the area delineated in
orange.

5.3.3 Semantic segmentation of aerial images

Datasets and noisy labels simulations In this experiment we consider the task of assigning every
pixel of an aerial image to an urban land use category. We use a widely used remote sensing benchmark,
the ISPRS Vaihingen semantic labeling dataset§§. The data consist of 33 tiles (of varying sizes, for a
total of 168′287′871 pixels) acquired by an aircraft at the ground resolution of 9cm. The images are true
orthophotos with three spectral channels (near infrared, red, green). A digital surface model (DSM) and
a normalized digital surface model (nDSM) are also available, making the input space 5-dimensional.
Among the 33 tiles, we used the initial data split (11 tiles for training, 5 for validation and 17 for
testing). As ground truth, six land cover classes (impervious surfaces, building, low vegetation, tree, car,
background/clutter) are densely annotated.

We simulated label noise by swapping labels at the object level rather than flipping single pixels. An
object is the connected component of pixels sharing the same label. We also focused on plausible labeling
errors: for instance, a car could be mislabeled to an impervious surface, but not to a building or a tree.

§§http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
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Table 5.6: Per class F1 scores, average F1 score and overall accuracy (%) on the test set of Vaihingen. The best
results (on the noisy dataset) are highlighted in bold.

Class CCE CCE Bootsoft CoTeaching AR WARw2v

Training set Clean Noisy

Buildings 90.29 75.06 88.34 75.1 81.6 89.04
Cars 58.91 14.21 10.98 26.6 21.6 25.78
Imperv. surf. 85.76 62.20 82.66 76.9 70.9 79.01
Low vegetation 76.32 25.92 61.40 57.4 57.8 71.56
Trees 84.72 70.89 80.49 77.5 78.9 82.92

Average F1 79.20 49.65 64.77 63.6 62.2 69.66

Total Accuracy 83.89 63.95 78.87 74.6 77.1 78.43

Following this methodology, a third of the connected components had the label flipped. An example of
the corrupted label data is shown in Figure 5.2.

Model We used a U-Net architecture [Ronneberger 2015], modified to take the 5 channels input data as
inputs. The network was trained for 300 epochs (with 90◦, 180◦ or 270◦ rotations and vertical or horizontal
flips as data augmentation) using the Adam optimizer with an initial learning rate of 10−4 and coefficients
(β1, β2) = (0.9, 0.999). After 10 epochs, the learning rate is set to 10−5. Furthermore, we predict on the
full image using overlapping patches (200 pixels overlap) averaged according to a Gaussian kernel centered
in the middle of the patch (σ = 1). This architecture has been shown to perform well on the semantic
segmentation task in general, and on this dataset in particular [Xu 2018]. Using this methodology, we
obtain an overall accuracy on the clean data of 83.89%, which is close to the state-of-the-art for this
dataset.

Results We compare WARw2v with standard CCE, Bootsoft, Co-Teaching and AR. The results, computed
on the full test ground truth (including boundaries) and averaged over 2 runs, are reported in Table 5.6.
Note that the classes are unbalanced and, for most of them, the F1-score is improved using WARw2v, except
for the dominant class (impervious surfaces). This leads to a much higher average F1-score using WARw2v

(compared to its competitors), while the overall accuracy is only slightly decreased compared to Bootsoft.
This behavior can be seen in the maps shown in Figure 5.3. We can see in the close-ups that Bootsoft
performs poorly in detecting the cars, which are often confused with generic impervious surfaces.

We applied our method for semantic segmentation on remote sensing data. In the next section, we
make a final evaluation on image classification with open set noise.

5.3.4 Image classification with open set noisy labels

As a final benchmark, following [Wang 2018c,Yu 2019] we evaluate our proposed method on realistic open
set noisy labels scenarios. The open set noisy datasets are created by replacing some training images
with out of domain images, while keeping the labels and number of images per class unchanged. In
our experiments, we simulated open set noisy datasets following [Wang 2018c,Yu 2019] for CIFAR 10
dataset by replacing images with others coming either from the SVHN or ImageNet32 (images of size
32×32) [Oord 2016] datasets.
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Table 5.7: Test accuracy on CIFAR10 dataset with 40% openset samples from SVHN and ImageNet32.
Dataset CCE Forward Iterative Co-teaching Co-teaching+ WARw2v

CIFAR-10+ 40% SVHN 67.45 56.70 77.73 80.95 77.53 82.03
CIFAR-10+ 40% ImageNet32 66.69 66.77 79.38 80.34 75.47 80.61

CIFAR-10+SVHN CIFAR-10+ImageNet32
32×32×3 32×32 ×3

3×3 conv, 64 ReLU
3×3 conv, 64 ReLU

2×2 max-pool, stride 2
3×3 conv, 128 ReLU
3×3 conv, 128 ReLU
2×2 max-pool, stride 2
3×3 conv, 196 ReLU
3×3 conv, 16 ReLU

2×2 max-pool, stride 2
dense 256 → 10

Table 5.8: CNN models used in our open set noisy label experiments on CIFAR-10 with openset noise from SVHN
and ImageNet32.

Experimental set-up and Results. For the openset noise experiments, we used a 6 layers CNN with
one fully connected layer following [Wang 2018c,Yu 2019] (see Table 5.8). Between each convolutional
layer we used a batch normalization layer and a momentum of 0.1. The images are scaled in the range
[-1, 1] and the networks are trained by SGD with learning rate 0.01, weight decay 10−4 and momentum
0.9. The learning rate is divided by 10 after 40 and 80 epochs (100 in total). Table 5.7 reports the
classification accuracy on the CIFAR-10 dataset with 40% of openset noise. The experimental setting is
similar to [Wang 2018c] in order to ensure a fair comparison with the state-of-the-art methods. The scores
for the Iterative and Forward method are from [Wang 2018c], while for other competing methods we report
our replicated scores. Our method outperformed the competitors on both openset noisy datasets. Our
method is significantly better than all competitors for openset samples from SVHN, while for ImageNet32
openset samples we are slightly better than Co-teaching, and significantly better than remaining methods.
Note that our method does not need to reject openset samples on contrary to competitors.

5.4 Conclusion

In this chapter, we introduced a regularization based on optimal transport in order to learn in a noisy
label setting. Noisy labels often occur in a context of supervised learning where labels of given images do
not encode their classes correctly. These noisy labels impact negatively the learning of neural networks
as they have huge memorization abilities [Zhang 2017]. We show that using the VAT regularization is
effective to counter-balance the label noise influence on the neural networks. However when two classes
are similar, we want to modulate the regularization to keep complex boundaries. We achieved this by
using optimal transport as our divergence in the regularization and it is called Wasserstein Adversarial
Training. To encode the class similarities, we used the distance between the word2vec class representations
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or the distance between embedded data of different classes. We have evaluated our methods on standard
benchmarks, two real-world datasets and in an open set setting.
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In this chapter, we present how to adapt a Wasserstein GAN in order to generate natural examples of a
given pre-trained classifier. The considered setup is the following: our intent is to generate untargeted
natural adversarial examples in a black box scenario, which is detailed in Section 4.1.3. We
first review how GANs were used to generate remote sensing images, in what purposes and how they
can be used to generate adversarial examples. We then present our main contribution: a reweighted
discrete measure fed to a Wasserstein GAN to generate natural examples. The reweighted measure gives
bigger weights to misclassified samples by the given classifier. We present several reweighting strategies
and discuss their pros and cons. We finish this chapter by presenting the performance of our reweighted
measure to generate adversarial examples on real-world remote sensing data. These contributions have
been published to IEEE Transactions on Geoscience and Remote Sensing [Burnel 2021].

6.1 GANs for remote sensing images
Generative modelling for remote sensing data has been investigated in several references. GANs were
used to generate such data in [Audebert 2018]. They used a conditional GAN architecture, where they
take as inputs a hyperspectral class and a random noise, to control the class of generated data. They
showed that the generated spectra quality is genuine-looking and physically plausible. Furthermore,
they experimentally validated that the generated samples can be used for data augmentation strategy to
improve classification accuracy. The generation of super resolved remote sensing data was investigated
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in [Jiang 2019]. To this end; they relied on two main subnetworks combined with an adversarial learning
strategy. GANs have also been used to learn unsupervised representations as done in [Lin 2017]. They
used the generator to generate data-like images and the discriminator was used as a feature extractor
for classification purposes. [Duan 2018] also used GANs for learning representation by incorporating a
non-local layer into their architecture. GANs have also been used in remote sensing for domain adaptation
on hetereogenous data [Voreiter 2020], which might be seen as transfer learning with different type of
data.

In the next section we introduce our main contribution. We propose to reweight the empirical measure
in order to generate adversarial data. We then discuss the different reweighting strategies and their pros
and cons.

6.2 Adversarial Reweighting WGAN

We recall the notations. As we have only access to n samples x ∈ X of an unknown measure α, we mostly
deal with underlying probability measures. The measure associated to real and training data is denoted
Pr ∈ M+

1 (X ) and the generated data distribution as PG ∈ M+
1 (X ). G is a deterministic generator,

classically expressed as a neural network, that takes as input a random vector z ∼ N (0q, Iq), where q is
the dimension of this random variable. We generally assume that q � d, with d the dimensionality of the
training data.

6.2.1 Adversarial Reweighting WGAN

To generate data similar to the training data, we use an empirical distribution with uniform weight P̂r in
the classical GAN training, i.e P̂r = 1/n

∑n
i δxi . It is customary for empirical distributions to suppose

that the samples are drawn i.i.d., from the underlying distribution. One solution to change the GAN goal
is to change the empirical distribution P̂r. Instead of encouraging the generator to generate data close to
the true data, our method, called ARWGAN, encourages the generator to generate realistic data that
make the classifier’s prediction fail. A natural solution to reach this goal is to give a bigger weight in the
distribution to true misclassified data than to those that are correctly classified. The resulting weighted
distribution, denoted P̂ar , must have the following form: P̂ar =

∑n
i=1 p(xi)δxi , where:

∑n
i=1 p(xi) = 1. The

GAN is trained to minimize the Wasserstein distance between the generator distribution P̂G and the
reweighted true distribution P̂ar . Finally, our new loss function is of the form:

min
ψ

max
φ

E
x∼P̂ar

[Dφ(x)]− Ez∼Pz [Dφ(Gψ(z))] + λE
x̂∼P̂x̂

[(max{0, ‖∇Dφ(x̂)‖2 − 1})2]. (6.1)

Intuitively, the generator is a map between the latent space and the adversarial data area of the true
distribution. To the best of our knowledge, it is the first time the distribution is modified for generative
purpose. Now we describe and review the impact of different reweighting methods.

6.2.2 Several flavors of reweighting

Several possibilities exist to modify the empirical distribution of the true data. We give a list of the
different weighting strategies for p(x). We start by the considering only misclassified data.
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Hard weighting

An intuitive way to generate adversarial examples is to only consider misclassified data, where a constant
weight is given to misclassified data and 0 for correctly classified data. Let Nm be the number of
misclassified data, then the misclassified data have normalized weights equal to 1/Nm. The downside of
this weighting strategy is that few data are left for training in the context of a very accurate classifier.
This is problematic as GANs are data hungry which means that this method is not efficient to generate

adversarial examples. To summary we have phard(x) =
{

0 if x is correctly classified by fθ
1
Nm

otherwise
.

Soft weighting

Another weighting approach is to use the prediction score from the classifier. Such approach could take
into account examples which are correctly classified but with a low confidence. We refer to those samples
as soft adversarial examples. In order to consider the soft adversarial examples, we can use a softmax
function. It is defined as:

S(fyθ (x), w) , exp(w ∗ [fyθ (x)− fyθ (x)max])
K∑
i=0

exp(w ∗ [fyθ (xi)− fyθ (x)max])
, (6.2)

where fyθ (x) is the prediction to belong to the correct class, fyθ (x)max is the maximal probability among
the batch of data to belong to the correct class and w is a temperature coefficient that controls the
entropy of the resulting distribution. However as the objective is to generate adversarial data, we consider
1− fyθ (x) rather than fyθ (x). The soft weighting strategy can be expressed as psoft(x) , S(1− fyθ (x), w).
Figure 1.(c) is an example of weighting using the softmax function with a temperature w = 5. Note that
in the case of w = 0, we recover the original WGAN and when w tends to infinity, we recover the hard
weighting strategy.

Weight clipping. In order to make the softmax strategy more robust to potential outliers in the dataset,
we propose to apply a clipping function to all prediction vectors fθ(x). We denote the threshold κ and clip
the prediction vector fθ(x) to this maximum value κ. The clipping function is applied to the prediction
vectors before the softmax strategy. In our experiments, we selected a threshold of 75%. Putting all
together, the weighted distribution is :

pclip(x) , S(min(κ, (1− fyθ (x)), w). (6.3)

Example of weights. To demonstrate the relevance of the different reweighting methods, we use a
toy dataset to illustrate the softmax approach. See Figure 1. (a) to (f), where we represent data from
a certain class with points cloud, the classifier’s decision boundary with a black line, so that points
under the line are correctly classified and points over the line are misclassified. When we get closer
and beyond the classification line, the point clouds become bigger with a bigger weight. However, this
might be problematic when the training data is tainted by outliers. For instance, in the presence of few
misclassified data with high inaccurate predictions and a majority of misclassified data with medium
inaccurate prediction, the former get a disproportionately large weight as shown in Figure 1.(e). The
effect of the threshold can be seen in Figure 1.(f). where the outlier now has a similar weight to the other
misclassified samples.
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Illustration of the reweighting scheme
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Figure 6.1: Illustration of different reweighting strategies for adversarial data generation. (a) is the standard
uniform weight between data. (b) is a hard weighting where we only consider misclassified data. (c), (d) and (e)
are softmax weighting strategy for different temperatures. (f) is the combination of softmax and clipping strategies.

Minibatch weighting

We numerically found that computing the reweighting directly on the full distributions gives numerical
instabilities when batches with small weighted data are selected. A possible solution to this problem is
to compute the reweighting strategy on batches from the distributions. In practice, we draw samples
uniformly at random from the training images and make a reweighted distribution on this batch. We
denote this distribution as Par⊗m. The loss function becomes an expectation over mini-batches:

min
ψ

max
φ

Ex∼Par⊗m [Dφ(x)]− Ez∼Pz [Dφ(Gψ(z))] + λEx̂∼Px̂ [(max{0, ‖∇Dφ(x̂)‖2 − 1})2], (6.4)

where m is the minibatch size. As we have detailed our different reweighting strategies, we evaluate them
on different scenarios in the next section.

6.3 Numerical experiments on generative modelling
In this section we describe the different experiments that were designed to evaluate ARWGAN on simulated
and real data. Section 6.3.1 shows a simple example where ARWGAN is trained to fool a classifier on
synthetic 2D data. The first experiment on real-life data, provided in Section 6.3.2, aims at fooling a
classifier trained on hyperspectral images. In Section 6.3.2, we study the transferability of our adversarial
generators across different classifiers. In Section 6.3.3 we focus on segmentation, and train ARWGAN
models to modify realistically an image in order to fool the segmentation of a given model. This is done by
modifying IRRGB images through a patch in order to make them adversarial. Finally in Section 6.3.4, we
measure the capacity of ARWGAN to generate data which can fool the state-of-the-art detector YOLOV3.
The code can be found here∗.

For all experiments we use a RMSProp optimizer [Tieleman 2012b], with a learning rate of 0.00005 for
the generator and 0.0001 for the critic. Experiments were done on a single RTX 2080 Ti GPU.

6.3.1 Adversarial generator for 2D data classification

The first experiment illustrates ARWGAN against a pre-trained classifier on the well known two moons
toy dataset [Pedregosa 2011b]. We consider 4000 training samples. On this toy task, we want to generate
data which belong to class 1 but are classified as belonging to class 2, i.e., the white point clouds in Figure
6.2. The classifier used is a pre-trained dense 2-layer with a classification accuracy of 92%. The classifier
boundary is represented as a black line. The generator and discriminator share the same dense 3 hidden

∗https://github.com/PythonOT/ARWGAN
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ARWGAN, w=20, =0.5

generated data
original data

WGAN

generated data
original data

Figure 6.2: Adversarial data generation with WGAN (left) and ARWGAN (right) on two moons dataset. The
black line is the classifier boundary. The kernel density estimation of generated data is in red.

layers architecture of size 128, 128 and 64 respectively. The input noise dimension z ∼ P̂z is 10. The batch
size is 256 and the networks is trained for 600 epochs. We then train both a WGAN and an ARWGAN to
see in which zone they generate class 1 data. To visualize the generation area, 1500 samples are generated
and a kernel density estimation of these data is performed. For ARWGAN, the temperature w is set to 20
and the clipping value κ is 0.5. We see that WGAN generates data all over the class 1. On the other
hand, ARWGAN generates a majority of misclassified data and some correctly classified but close to the
classifier boundaries. This illustrates the effectiveness of our method to focus on generating adversarial
data for a pre-trained classifier. We now evaluate its performance on real-world remote sensing images.

6.3.2 Adversarial generator for hyperspectral data classification

In this subsection, we investigate the effectiveness of ARWGAN to fool a classifier trained on real-world
hyperspectral data. Unlike traditional RGB images, hyperspectral imagery divides the color spectrum in
multiple contiguous bands that can outreach the visible spectrum. In those images a pixel is represented by
a spectrum, which can be used among others to identify the materials observed in this pixel. We consider
two different hyperspectral images with two different classifiers. We first train a pixel classifier that takes
a spectrum as input and outputs a material probability vector. We aim to fool the classifiers by generating
spectra which are misclassified. In order to evaluate the pertinence of ARWGAN’s generated data, we
first check if the adversarial data are genuine-looking like the targeted class and then the percentage of
correctly classified adversarial data. We evaluate in the first paragraph ARWGAN generated data against
a Support vector Machine classifier trained on the Pavia University dataset. In a second paragraph, we
consider a convolutional neural network on the Houston dataset. And in a third paragraph, we evaluate
the transfer of adversarial examples on unseen classifiers.

Support Vector Machines on Pavia University

We first test our method against a classical SVM [Boser 1992,Hearst 1998] classifier trained on the Pavia
University hyperspectral dataset. The Pavia dataset has 9 classes, composed of hyperspectral images with
103 bands of size 610×340px, (see Figure 6.3). The SVM has an accuracy score of 84% and a κ = 0.79,
see the confusion matrix for more details (Figure 6.4). Performances are competitive as we consider a
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False RGB Train set Test set

Asphalt
Meadows

Gravel
Trees

Painted metal sheets
Bare Soil

Bitumen
Self-Blocking Bricks

Shadows

Figure 6.3: [Best viewed in color] Pavia University false RGB (left) and ground truth used for training (center)
and testing (right).

spatially disjoint splitting with 1/3 of data for training, as shown in Figure 6.3.
Experimental setting. For this experiment, we focused on generating meadows spectra. We choose

1-dimensional convolution layers for both WGAN’s generator and critic as they keep coherence between
close spectral bands. The architecture used is detailed in Figure 6.5. We use the whole dataset to train
ARWGAN (which does not require labels), with a batch size of 64, λ of 10 and w of 20. Regarding the
classifier, its accuracy performance is 84% for the meadows spectra class.

Results. We first check if the generator is able to generate adversarial data that are close to the
training data. We consider 1000 adversarial generated spectra. A majority is classified as Bare Soil (80%)
and the remaining mostly as Trees (17%). With Figure 6.6 we present a comparison between Meadows
spectra, our adversarial Meadows spectra used to reconstruct an image close to the original and the
two most predicted classes: Bare Soil and Trees. Our generated spectra are very close to the targeted
spectra and the two other spectra appear to be very different. This means that we successfully fool the
classifier while having visually valid generated data. We also conduct a comparison with the method
from [Song 2018] using the same network architecture and training procedure for comparison purpose. We
reconstructed Pavia image from 1000 generated adversarial spectra for both methods in Figure 6.7. We
see that while our generated adversarial spectra look like the targeted data it is not the case for generated
data from [Song 2018] showing the success of our strategy.

We then check the accuracy of the pre-trained SVM classifier on the generated data. Results are
gathered in Table 6.1. We can observe that 35% of ARWGAN’s spectra are correctly classified while it
goes up to 79% for WGAN’s spectra, which confirms that ARWGAN generates a larger proportion of
misclassified data.

We have conducted a sensitivity analysis of our temperature parameter w without using any ceiling
and gathered the results in Table 6.2. As expected our method tends to generate more adversarial data
for bigger temperature. Indeed, for a temperature w = 1, ARWGAN generates a few more adversarial
example than WGAN, but when w is equal to 5, the generated adversarial example proportion doubles.
For further understanding we show the result of using Hard weighting for the Pavia class painted metal
sheets, and compare it with a soft weighting strategy. If we look at adversarial proportion for this class
then the Hard weighting is able to generate 81% of adversarial example, while Soft weighting have a
smaller rate with 18.6% and a WGANs have a rate of only 0.6%. However we illustrate in Figure 6.8 the
limit of the Hard weighting strategy, that is overfitting with just a few modes of generated examples very
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Figure 6.4: SVM Classifier confusion matrix on Pavia dataset

Generator: 226,353 parameters Critic 23,457 parameters
INPUTS: 128×1 INPUTS: 103×1

Dense → 1664, ReLU Conv1D k=3 stride=2, filters=16 ReLU
Reshape → 26×64 Conv1D k=3 stride=2, filters=32 ReLU
Conv1Dᵀ k=3 stride=2, filters=32 ReLU Conv1D k=3 stride=2, filters=64 ReLU
Conv1Dᵀ k=3 stride=2, filters=16 ReLU Flatten
Conv1Dᵀ k=5 stride=1, 103×1 TanH Dense → 1

Figure 6.5: Generator (Top) and critic (Bottom) 3 convolutional layer architectures to generate adversarial
hyperspectral Pavia data.

similar to those in the dataset, while soft weighting is able to generate more diverse examples.

Deep neural networks on DFC2018

We now test ARWGAN on the DFC2018 dataset [grs ] [Xu 2019], which was acquired over the University
of Houston campus and its neighbourhoods. The hyperspectral data cover a 380-1050 nm spectral range
with 48 bands at a 1-m Ground Sampling Distance. Here classes do not only cover urban classes (buildings,
cars, railways, etc.) but it also covers vegetation classes (healthy or stressed grass, artificial turf, etc.). An
overview of the dataset is given with Figure 6.9, where we only take 3 of the 48 bands for visualization
purpose, and the ground truth labels are shown in the same figure. The considered classifier is based
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Table 6.1: Classification accuracy comparison between sprectra from Full Pavia image, classical GAN reconstruction,
and ARWGAN reconstruction (10 runs), lower is better

Accuracy Std
Real meadows 0.89 /
GAN meadows 0.79 0.004
ARWGAN meadows 0.35 0.01

0 20 40 60 80 100
bands

0.2

0.1

0.0

0.1

0.2

0.3

0.4

sp
ec

tra
l m

ea
n 

- m
ea

do
ws

 sp
ea

ct
ra

Adv. Meadows
Meadows
Trees
Bare Soil

Figure 6.6: [Best viewed in color] Comparison between several class spectra means against meadows spectra from
Pavia dataset. All means are reported centered around the mean spectrum of meadows for better visualization.
The spectra means are denoted in plain line and the standard deviations are in dotted lines
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Figure 6.7: [Best viewed in color] Comparison with state-of-the-art [Song 2018] class spectra means against
meadows spectra. All means are reported centered around the mean spectrum of meadows for better visualization.
The spectra means are denoted in plain line and the standard deviations are in dotted lines

on a simple 1D CNN [Hu 2015], is composed of 3 CNN layers and 1 FC layer for a total of 148,373
parameters. His overall accuracy is 52% with κ = 0.43 on disjoint train/test, which is consistent with the
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Figure 6.8: Comparison between hard and soft weighting spectra for painted metal sheets class on Pavia dataset.
We plot 100 spectra for both weighting strategies.

Figure 6.9: Data from the DFC2018 dataset. Example of false RGB image (left) and the ground truth (right).

Table 6.2: Sensitivity analysis of the temperature parameter w for generated meadows from Pavia dataset
w 0 1 5 10 20 35 50 100

adv. proportion 25.5% 29.2% 50.4% 55.3% 57.7% 55.0% 61.6% 60.4%

result observed in recent reviews [Audebert 2019].
Experimental setting. For this experiment, we investigate different adversarial class spectra:

adversarial healthy grass spectra, adversarial car spectra and adversarial cross-walk spectra. For the
WGAN architecture, we choose 1-dimensional convolution layers for both the generator and the critic as
done in the previous experiments. The architecture is detailed in Figure 6.10. We use the whole dataset
with a batch size of 64, λ is set to 20 and in this experiment w is set to 20. Regarding the classifier
performance, its accuracy on the whole dataset is 82% for the healthy grass spectra, 39% on the Cars
class, and only 5% on the Crosswalks class. This allows us to discuss the quality of adversarial generated
data according to the classifier performance on a specific class with different accuracies.

Results. We create an adversarial image by generating adversarial spectra for all the pixels of the
class we attack. A visualization of the adversarial image for healthy grass can be viewed in Figure 6.11 in
false colors, this is the image we refer to in this section. The pre-trained classifier has an overall accuracy
of 82% on real healthy grass spectra. On adversarial generated spectra, its performance decreases by 50%
as shown in the top row of Table 6.3.
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Generator: 110,769 parameters Critic: 22,561 parameters
INPUTS: 128×1 INPUTS: 48×1

Dense 128 → 384, ReLU Conv1D k=3 stride=2, 24×16 ReLU
Reshape 384 → 6×64 Conv1D k=3 stride=2, 12×32 ReLU
Conv1Dᵀ k=3 stride=2, 12×32 ReLU Conv1D k=3 stride=2, 6×64 ReLU
Conv1Dᵀ k=3 stride=2, 24×16 ReLU Reshape 6×64 → 384
Conv1Dᵀ k=5 stride=2, 48×1 TanH Dense 384 → 1

Figure 6.10: Generator (Top) and critic (Bottom) 3 convolutional layer architectures to generate adversarial
hyperspectral DFC2018 data.

We now check the adversarial quality of generated spectra by comparing their means and standard
deviations to the original data. Figure 6.12 gathers all spectra statistics for adversarial healthy grass
generation. We compare the target class against the generated adversarial examples from ARWGAN,
the generated adversarial examples from [Song 2018] and the two most predicted classes by the classifier
(evergreen trees and stressed grass classes). We see that the ARWGAN adversarial spectra statistics
match the targeted class better than the predicted class and state-of-the-art adversarial data generation.
This confirms the competitiveness of our method to generate data similar to the training data.

We now investigate the performance of ARWGAN to generate adversarial cross-walk and cars spectra.
The spectra statistics evaluation can be found in Figure 6.13. We compare the target class, ARWGAN
generated data, the state-of-the-art adversarial data and the most predicted class by the classifier. We can
see that ARWGAN generated data stays very similar to the target class. Regarding the classifier accuracy,
we see in Table 6.3 that the classification accuracy of ARWGAN generated spectra is smaller than for real
data, it decreases by 20% for the car class and 4% for the cross-walk class. We also see that there is a
correlation between the classifier performance and the number of adversarial examples per batch. For high
performing classifier, the number of misclassified data is really low and the GANs have few misclassified
examples to be trained on.

Qualitative comparison with state-of-the-art. We now compare more deeply ARWGAN with
[Song 2018]†. We adapted their method to use the same architectures considered here. We used untargeted
attacks, which means that we want our spectra to be misclassified but we do not want it to be classified
as a specific label. The results are visible with Figure 6.12,6.13. Regarding the Healthy grass class, the
adversarial spectrum of [Song 2018] exhibits a lot of noise and does not fit the target class as well as
ARWGAN generated spectra. Similarly for the Crosswalks class, their algorithm was not able to produce

†following their online implementation : https://github.com/ermongroup/generative_adversary

https://github.com/ermongroup/generative_adversary
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Original image Adversarial image
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Evergreen trees

Stressed grass
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Figure 6.11: [Best viewed in color] Healthy grass visualization. (Top) False RBG image built from original
spectra (left) and from adversarial spectra (right). (Bottom) Classifier prediction on the original spectra (left) and
adversarial spectra (right).

Table 6.3: Classification accuracy for the pre-trained classifier over ARWGAN generated spectra and real DFC2018
data (10 runs).

Mean Std Real data
Healthy Grass 0.34 0.06 0.82
Car 0.19 0.05 0.39
Crosswalks 0.01 0.009 0.05

spectra that fit the real spectra unlike ARWGAN. The method from [Song 2018], while being able to
handle all classes, have greater difficulties that ARGWAN on underrepresented classes even if the classifier
has a poor accuracy on these classes.

Cross-model transferability: generalizing adversarial examples to unseen classifier

In this part we consider the question of transferring generated adversarial examples for a pre-trained
classifier to attack an unseen classifier. In other words, we want to measure the ability of generated
adversarial examples to fool a classifier that was not used during training.

Experimental setting. For this experiment we used two different neural networks, whose details
are shown in Table 6.4, and an SVM classifier. While the two neural networks are built upon the same
blocks (Dense and Convolutional layers), we can see that they do not share the same performances on the
Healthy Grass class, meaning that we can expect that they learned different features. Classifier A has an
accuracy of 80% on the Healthy grass class while the accuracy of classifier B is only of 60% on this class.
Note that classifier B has a better overall accuracy. Classifier C is a SVM with a 52% overall accuracy
and a 75% accuracy on Healthy Grass class.

Results. For this experiment we look at the ratio of adversarial examples generated given classifier A,
B or C. All the results are visible in Table 6.5. ARWGAN generates around 90% of adversarial examples
against classifiers A, B and C when they are seen during training. From the results, we can see that there
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Figure 6.12: [Best viewed in color] Comparison between several class spectra means against healthy grass spectra
from DFC2018 dataset. All means are reported centered around the mean spectrum of healthy grass for better
visualization. The spectra means are denoted in plain line and the standard deviations are in dotted lines.
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Figure 6.13: [Best viewed in color] Comparison between several class spectra means against car and cross-walk
spectra. All means are reported centered around the mean spectrum of car or cross-walk for better visualization.
The means are in plain and the standard deviations are in dotted lines.

is a strong transfer of adversarial examples across classifiers. In the case of generators trained against
Classifier A, we generate 77.8% of adversarial examples for all classifiers. This shows that our method can
be used to attack unseen classifiers.

In this section, we showed that ARWGAN can successfully generate hyperspectral data which genuinely
look like training data and that are adversarial. In the next section, we demonstrate that ARWGAN can
modify training images in order to make them adversarial.

6.3.3 Adversarial segmentation with modified mask images

GANs are able to generate images but they can also be used to modify existing images. In this segmentation
experiment, we now focus on this last ability to modify realistically training data in order to fool the
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Table 6.4: Details on the three different classifiers used to test the generalisation of our generator, while having
similar overall accuracy we can see by looking at healthy grass accuracy that they do not learned the same features.

Num. Param. Overall
Accuracy

Healthy Grass
Accuracy

Convs
Layers

FCs
Layers

Classifier A 728,532 60% 80% 4 3
Classifier B 186,132 62% 68% 2 2
Classifier C 7,168,080 52% 75% / /

Table 6.5: Results for cross model transferability. Each column corresponds to a different generator trained against
a classifier and each row corresponds to a test on a classifier or a combination of them. Results are the percentage
of adversarial examples for 1000 generated samples (over 10 runs).

Test
Train Classifier A Classifier B Classifier C

Classifier A 89.68%, ±0.85% 78.78%, ±1.28% 73.03%, ±1.10%
Classifier B 93.68%, ±0.68% 89.32%, ±0.44% 83.39%, ±1.18%
Classifier C 84.05%, ±0.74% 81.50%, ±1.30% 90.70%, ±0.68%

A & B 88.27%, ±0.79% 77.59%, ±1.43% 71.73%, ±1.12%
A & C 81.58%, ±0.94% 76.26%, ±1.05% 79.23%, ±1.34%
B & C 78.36%, ±0.99% 68.15%, ±1.47% 69.57%, ±1.38%
all 77.80%, ±0.97% 67.52%, ±1.54% 68.71%, ±1.41%

segmentation of a pre-trained model. In order to modify an image we rely on a mask denoted M , in
the shape of a square at the center of an image. For an image to be both adversarial and realistic, the
generator makes slight modifications inside the mask. Our images have pixels which are composed of
Red-Green-Blue-InfraRed channels. To evaluate the performance of ARWGAN on this modification task,
we compare the predicted segmentation of the original and the modified data and we want the original
data to have a better segmentation. Furthermore we check that the modified images are still realistic by
using human perceptual evaluations.

Dataset. We consider two datasets. First the Potsdam dataset [pot ] which is a dataset composed of
38 6000×6000 pixels patches over the city of Potsdam, Germany. The patches are true orthophotos with
four channels red, green, blue, infrared and have a GSD of 5-cm, making it possible to see clearly objects
such as cars. We split the 38 images as follows: 28 images are used as training set and the remaining
10 images as test set. In total, we have 9138 cars in the dataset and from the patches, small images of
cars of size 128 by 128 were extracted using center of mass of individual cars on patches. Regarding the
neural network, we use a segmentation network (SegNet) [Badrinarayanan 2017] as a pre-trained model.
Its architecture is provided in Figure 6.14 and its performance on real data is available as a confusion
matrix in Figure 6.15.

The second dataset we considered is the Vaihigen dataset [vai ]. The main differences with the Potsdam
datasets are that images are RGB and have a GSD of 9-cm. We used 23 images as training set and the
remaining 10 images as test set.

Experimentation. The car segmentation is done within a 64 by 64 mask in the center of the images.
For the generator we used a U-Net [Ronneberger 2015] that takes as inputs both the image and the mask
in addition to a latent vector z, then it outputs a single new image as shown in Figure 6.16. The generator
works as follows: inputs are first compressed in latent information through convolutional and pool layers,
then the resulting latent vector is decoded with transposed convolutional layers to give a single new image
modified only inside the mask. Our modification task can be viewed as image inpainting and following
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INPUTS: 128×128×4 total parameters : 12,173,542
Conv2D k=3, 128×128×64, ReLU, MaxPool
Conv2D k=3, 64×64×128 ReLU, MaxPool
Conv2D k=3, 32×32×256 ReLU, MaxPool
Conv2D k=3, 16×16×512 ReLU, MaxPool
Conv2D k=3, 8×8×1024 ReLU, upsample
Conv2D k=3, 16×16×512 ReLU,

Conv2D k=3, 16×16×512 ReLU, upsample
Conv2D k=3, 32×32×256 ReLU,

Conv2D k=3, 32×32×256 ReLU, upsample
Conv2D k=3, 64×64×128 ReLU,

Conv2D k=3, 64×64×128 ReLU, upsample
Conv2D k=3, 128×128×64 ReLU,

Conv2D k=3, 128×128×32, ReLU
Conv2D k=3, 128×128×6, Softmax

Figure 6.14: Segmentation network for detection on Potsdam dataset

this analogy, we designed a network close to [Jo 2019] which showed impressive results using dilated
convolutions [Yu 2016]. In this experiments, the modified loss function is:

L2(Par⊗m,Pz,M , ψ, φ, θ) =
E(x,y)∼Par⊗m

(
Dφ(x)− Ez∼Pz [Dφ(Gψ(x,M , z))]

)
+ λEx̂∼Px̂ [(max{0, ‖∇Dφ(x̂)‖2 − 1})2]

+ η1

m∑
i=0

((1−M) ∗ (G(x,M , z)i − xi))2 − η2

m∑
i=0

(y ∗M) log[(1− fθ(x)) ∗M ]. (6.5)

We add a regularization term to the generator’s loss in (6.5), to ensure that only the mask M is modified
by penalizing the squared difference between unmasked original image and unmasked modified image
and we also add a term to favor adversarial segmentation. The latter modification of the loss function,
penalizes the GAN when it modified other pixels than the car pixels. Both of these terms are weighted by
constants η1 and η2, but taking η1 = η2 = 1 in the experiments gave meaningful results.

We now give more details about the training procedure. The critic Dφ is composed of 4 blocks of 3
convolutions each. Each block starts with a stride 2 convolution and each convolution has a kernel of size
3. Finally, we use a dense layer to get a scalar from the critic. We used a batch size of 32 and λ is set to
50.

Results. Some examples from the test set are gathered in Figure 6.17. We see in the first row two
different cases where ARWGAN performed well. In the first case few modifications of the image led to
huge difference in segmentation, the differences for the RES column are in red if the car is not segmented
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Figure 6.15: Segmentation network confusion matrix on Potsdam dataset for the considered U-net.

Original image Modified image Image w/o cars
Classifier Potsdam 0.762 0.481 /
Classifier Vaihingen 0.758 0.453 /
Human Potsdam 0.918 0.835 0.945
Mean confidence 2.524 2.240 2.229

Table 6.6: Results of perceptual evaluation, we can observe that out method lower the accuracy on both dataset
while retaining a good accuracy from human perception.

anymore or in green if the car is better segmented.
In the second case we needed much more modification to erase the car from the segmentation. The

second row shows two failure cases: a heavy modification of the input which results in a poor image
quality and a modification which leads to a better segmentation, thus failing as an adversary. Note that
these failure cases do not happen often. This can be seen in the perceptual evaluation, see Table 6.18,
that we designed to investigate if the generated results are convincing and adversarial. We did not add
a comparison with any method as, to the best of our knowledge, there is no existing method providing
region based generation of natural adversarial examples.

We illustrate in Figure 6.18 our method on Vaihingen dataset. While our method can give nice results,
we have noticed an unstability during training, suggestng that it might be important to validate η2 in
some applications with long training.

Perceptual evaluation. To assess the quality of our generated patches we conduct a perceptual
evaluation where we compare the ability of both trained classifier and humans to classify adversarial
samples. The classifier performance is evaluated using the test set, for both original and mask modified
images. And as we can see with the first row of Table 6.6, the classifier looses 28 points of accuracy when
it is evaluated on data from ARWGAN. However those results are only meaningful if those are real natural
adversarial example as we defined it in the first section, meaning that the generated patches are indeed
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INPUTS: 128×128×6 total parameters : 7,057,318
GatedConv k=5, s=2, 64×64×32, LReLU
GatedConv k=3, s=2, 32×32×64, lrn, LReLU
GatedConv k=3, s=2, 16×16×128, lrn, LReLU
GatedConvDilat k=3, r=2, 16×16×128, lrn, LReLU
GatedConvDilat k=3, r=4, 16×16×128, lrn, LReLU
GatedDeconv k=3, s=2, 32×32×64, lrn, LReLU
GatedConv k=3, 32×32×64, lrn, LReLU
GatedDeconv k=3, s=2, 64×64×32, lrn, LReLU
GatedConv k=3, 64×64×32, lrn, LReLU
GatedDeconv k=3, s=2, 128×128×4, lrn, LReLU

GatedConv k=5, stride=1, 128×128×4, TanH

Figure 6.16: Mask modification generator architecture on Potsdam and Vaihingen datasets

cars. To this end; we conducted a perceptual evaluation similar to [Song 2018], with the assumption that
if a human can detect a car then its segmentation is trivial. We conducted the perceptual evaluation by
first taking randomly 50 images where we had cars and 50 images where there were no cars, and then we
applied our method to the 50 images with cars, letting us with 150 images in total. We have developed a
simple test where 12 images are presented to humans. Among these images, 5 are ground truth cars, 5
were modified using our method and 2 do not have cars in them. In this test you must indicate whether
you see a car or not and associate this decision with a confidence level. This test was carried out by 74
persons and the results are gathered in the second and third rows of Table 6.6. Interestingly humans
loose 8 points of accuracy, however their confidence remains of the same order: Moderately confident.
When we compare the results, we see a 36% drop of performance for the classifier against 9% for Humans,
meaning that our method affected far more the classifier than the humans and that our method produces
convincing adversarial examples. After demonstrating how to use ARWGAN to modify a training example
to make it adversarial, we evaluate it against a state-of-the-art detector.

6.3.4 Adversarial car images for YOLOV3 detector

The last experiment consists in evaluating ARWGAN’s performance for generating cars and fooling
state-of-the-art detectors. Instead of semantic segmentation where each pixel has a label, the classifier
output is bounding boxes surrounding an object. In this experiment, we solely focus on the cars class
object, thus the classification task can be summarized as the detection of a car in images. We evaluate
the percentage of misclassified data in the generated ARWGAN and WGAN data.

Dataset. We use the same Potsdam dataset [pot ] than in previous experiment. We transformed the
Potsdam segmentation images to different images with bounding boxes around cars. To train the classifier
we used the same train set as the patch modification experiment. However to train the GAN, we used
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Figure 6.17: Results for patches modification, first row show examples where our method worked, second row show
failure cases, and the third row is showing the difference between the two other rows, for the labels we only showed
the difference with respect to ground truth of the car class.

both training and testing sets as done in our first experiment, which allows to increase the number of
training data.

Experimentation. The selected detector is a YoloV3 [Redmon 2018] that achieves an overall (Train
and Test) accuracy score of 99.5% with an objectness threshold of 0.75. This task seems very easy for
our classifier as we do not consider the Intersection Over Union. The generator architecture we consider
contains three convolutional layers and one dense layer (details in Figure 6.19). We set λ to 50. We
consider two different methods, we first train a WGAN and we evaluate its ability to generate adversarial
data. Then we used the WGAN generator as initialization for our method ARWGAN, and evaluate
the number of generated adversarial data. The critic in this experiment is the same as the previous
experiment.

Results. state-of-the-art classifiers have high accuracy and only have a few natural adversarial
examples making it hard to train our method. Nevertheless, using a pre-trained WGAN generator as
initialization for our generator leads to a high number of generated adversarial data with good image
quality. Example of natural adversarial car images can be found in Figure 6.20. We see that our generated
adversarial images have a better quality than natural adversarial images from the ground truth, called
adv. GT, or WGAN generated images. As seen in Table 6.7 the considered WGAN generates only 2.6%
adversarial data while our methods improve its score by more than 5 points (more than 3 times more
examples are adversarial), showing that even in extreme scenarios, our method is still able to generate
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Figure 6.18: Results on Vaihingen dataset. For each example, original (top) and adversarial (bottom) images with
car heatmaps. Our method reduces the classifier’s probability.
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INPUTS: 128×1 number of parameters : 17,048,928
Dense 128 → 8192, ReLU, reshape 8×8×128 GatedConv k=3, s=1, 32×32×64, ReLU
GatedConv k=3, s=1, 8×8×128, ReLU GatedConv k=3, s=1, 32×32×64, ReLU
GatedDeconv k=3, s=2, 16×16×128, ReLU GatedDeconv k=3, s=2, 64×64×32, ReLU
GatedConv k=3, s=1, 16×16×128, ReLU GatedConv k=3, s=1, 64×64×32, ReLU
GatedConv k=3, s=1, 16×16×128, ReLU GatedConv k=3, s=1, 64×64×32, ReLU
GatedConv k=3, s=1, 16×16×128, ReLU GatedConv k=3, s=1, 64×64×32, ReLU
GatedDeconv k=3, s=2, 32×32×64, ReLU GatedDeconv k=3, s=2, 128×128×3, ReLU
GatedConv k=3, s=1, 32×32×64, ReLU GatedConv k=5, s=1, 128×128×3, ReLU

Figure 6.19: Car generator architecture trained on Potsdam dataset [pot ]

adversarial data. Moreover Figure 6.20 shows that despite having few good looking natural adversarial
examples in the ground truth, our method manages to generate better looking images.
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Adv. generation rate std
WGAN 2.6% ±0.94%

Our method 7.8% ±2.5%

Table 6.7: Adversarial generation rate for our pre-trained classifier over generated data from different methods.

adv.GT WGAN ARWGAN

Figure 6.20: Adversarial car images for the YoloV3 detector. Left column are GT adversarial examples, middle
column are WGAN adversarial examples and right column are ARWGAN adversarial examples

As expected, the method of [Song 2018] failed to generate adversarial examples on this example, as the
associated auxiliary classifier was always surpassed by YOLOV3 in terms of car detection. The auxiliary
classifier has to detect if there is a car in the generated examples, which in practice led YoloV3 to also
detect the presence of a car.

6.4 Conclusion

In this chapter, we introduced a novel method to generate adversarial data for a given pre-trained classifier.
The purpose is to reweight the initial uniform measure and to give larger weights to misclassified data. Thus
the WGAN is trained with the reweighted empirical measure and is encouraged to generate misclassified
samples. We proposed several reweighting strategies. After describing the limits of a hard weighting
strategy, we proposed a soft strategy based on a softmax function. We then extensively evaluated our
method on remote sensing data. We started by generating hyperspectral data and demonstrated the
realistic quality of the generated samples. They were both misclassified and statistically close to the
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targeted class. Furthermore, they were not similar to data of the predicted class. We also evaluated the
transfer of adversarial examples between seen and unseen classifiers and we show that a good proportion
of ARWGAN adversarial examples can attack unseen classifiers. We then proposed to modify a given
training remote sensing image in order to make it adversarial with a WGAN. Using a centered mask on
the center of the image, ARWGAN modified what was in the mask in order to make the segmentation fail.
Finally, we trained our method to fool a state-of-the-art detector on cars.

Unfortunately, this method can not be straightforwardly adapted to other OT based GANs. The
reason is that other OT based GANs rely on the computation of optimal transport between minibatches
of uniform empirical measures. This approximation is the topic of the final part of this thesis.
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When optimal transport is used as a loss function to train a neural network, it has to be computed
at each iteration of the optimization procedure. In a big data scenario, the number of samples n is very
large. Thus, the cubical computational complexity in n of exact optimal transport makes it prohibitive in
practice. To use OT in practice, we can possibly rely on some OT variants. The entropic-regularized OT
reduces the cubical complexity to quadratic, which is still expensive. Other strategies were developed to
reach complexities close to a linear complexity. Multi-scale OT strategy is one of them [Gerber 2017].
The multiscale decomposition yields a sequence of optimal transport problems, that are solved in a
top-to-bottom fashion from the coarsest to the finest scale. It is approximately linear in time and memory
in the number of nodes. Another line of research used ground costs computed between well chosen positive
features, it reduces the cost of a Sinkhorn iteration to a linear computation [Scetbon 2020]. We can also
build low rank transport plan as done in [Forrow 2019,Scetbon 2021].

In this chapter, we discuss another practical solution for large-scale OT. We introduce the concept
of optimal transport between minibatches. We detail how it is computed and the empirical benefits of
this strategy. Despite strong computational gains, a formal study of the minibatch OT formulation is
lacking. In this manuscript, based on the literature regarding the statistical properties of OT and the
sampling strategy, we aim at providing a theoretical study of minibatch OT. That is why, in Section 7.2,
we discuss the optimal transport statistical and smoothness properties. And then, we finish this chapter by
presenting the concept of U-statistics, which is at the heart of our study on minibatch optimal transport.
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7.1 Large scale Optimal Transport through minibatches computation

In this section, we review how the use of minibatch with optimal transport appeared.

Empirical interests The Kantorovich-Rubinstein duality turns the original marginal equality con-
straints into inequality constraints, which can be hard to optimize. These inequalities are generally
formulated as specific relations between the two dual potentials, known as the c-transform. In the notable
case of Euclidean distance as a ground cost, however, these constraints translate more simply in constraint
over the Lipschitzness of the potential. Nonetheless, practical approximations are still difficult to obtain
and are still a source of active research [Arjovsky 2017,Gulrajani 2017].

Thus, we might want to compute the primal or dual OT with the given ground cost. Unfortunately,
we showed in Section 2.3 that the computational complexity of optimal transport is of order O(n3 log(n))
where n is the number of samples and that the memory complexity is O(n2). The latter is due to the
storage of the ground cost and the coupling, which are square matrices of size n. Thus in the big data
scenario, practitioners relied on a common technique in deep learning, a minibatch computation of optimal
transport. The idea is simple, instead of estimating the optimal transport cost between the full empirical
measures, we only estimate the cost between a subset of them. It takes the form of drawing m samples at
random in both the source and the target measures, associating a uniform weight to each of them, and
then computing the OT cost between these samples only. This strategy gives a computational complexity
of O(m3 log(m)) if one uses the original OT cost and a memory cost of O(m2) with m� n.

The minibatch strategy has been successful on several machine learning problems. It has been popular
in generative modelling to design variants of the Wasserstein GANs. For instance, [Genevay 2018] developed
a GAN based on the AutoDiff Sinkhorn Divergence. After taking two minibatches of training data and
generated data, the authors used a feature extractor Dφ before applying the squared Euclidean distance as
ground cost, i.e., for x,y ∈ Rd, c(x,y) = ‖Dφ(x)−Dφ(y)‖2. Then they optimize the feature extractor and
the generator as a min max problem on minibatches. In a concurrent work, [Salimans 2018] developed a
MMD loss based on a minibatch computation of the entropic-regularized OT. On another note, generative
models based on the sliced Wasserstein distance [Kolouri 2016,Kolouri 2018,Kolouri 2019a,Liutkus 2019]
fall into the minibatch framework where they compute the SWD between minibatches of input distributions.

Another popular example is domain adaptation. We recall that a fundamental technique to transfer
the knowledge between domains is to use a domain alignment loss. Based on a feature extractor, the
idea is to align the extracted data features of the two domains when data share the same class. The
alignment strategy can be achieved by optimal transport on the joint domains of data and labels as done
in [Damodaran 2018,Xu 2020a,Fatras 2021b]. The ground cost incorporates a term on the data features
and on the labels. However, computing the optimal transport cost between the full distributions at each
iteration of the optimization procedure is too costly. Thus practitioners successfully relied on an optimal
transport minibatch computation. We nonetheless prove in Section 9 that the minibatch procedure creates
negative transfer and we propose a strategy based on unbalanced optimal transport to alleviate this
problem.

Minibatch OT has also been used in missing data imputation [Muzellec 2020] or to compute an online
OT variant [Mensch 2020]. This approximation was successful in practice even if only subsets of input
measures were considered. We now present key statistical elements of OT that we use to justify the
empirical success of the minibatch strategy.
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7.2 Optimal Transport statistical and smoothness properties
In this section, we discuss the statistical and smoothness properties of optimal transport which are
important in the context of machine learning. We start by discussing the approximation of optimal
transport between continuous measures by their empirical counter-parts. We then discuss the empirical
estimator bias w.r.t. the continuous optimal transport. Finally, we discuss the smoothness of optimal
transport w.r.t. the ground cost, which is at the heart of modern optimization strategy.

7.2.1 Empirical estimation of Optimal Transport

Approximation with empirical measures: the curse of dimensionality

In machine learning, the probability measures α, β ∈M1
+(X ) are unknown and we only have access to

the empirical counter-parts αn, βn. That is why in order to estimate the optimal transport cost L(α, β),
we compute directly the OT cost between the empirical measures L(αn, βn). This approximation is valid
because our empirical estimators metricize the weakly convergence, i.e., L(αn, βn) ⇀

n→+∞
L(α, β). Indeed

the empirical distribution weakly converges towards the true distribution as the number of samples grows,
αn ⇀

n→+∞
α (resp. βn ⇀

n→+∞
β) and the original optimal transport cost, the Sinkhorn divergence and

the unbalanced variants metrize the convergence in law [Peyré 2019,Feydy 2019,Séjourné 2019]. While
the Gromov-Wasserstein distance does not metricize the weak convergence, it still verifies the property
αn ⇀

n→+∞
α =⇒ GW (αn, βn) ⇀

n→+∞
GW (α, β), this is straightforward using [Mémoli 2011, Theorem 5.1

(c)] and Wasserstein distance’s weak convergence. As the convergence is ensured between the two terms,
we want to answer the important question of the convergence rate. This rate is often called the sample
complexity. A quick convergence rate means that the quantity L(α, β) is easy to estimate empirically. We
now give the sample complexity of optimal transport and the entropic-regularized OT and compare them
to the sample complexity of MMD [Gretton 2012].

Theorem 7.2.1 ( [Dudley 1969]). For X = Rd and measures supported on bounded domains, for
d > 2 and 1 < p < +∞ we have

E(|Wp(αn, βn)−Wp(α, β)|) = O(n−1/d). (7.1)

The expectation is taken with respect to the samples (xi,yi)1≤i≤n. This rate is tight in Rd if one of the
measures has a Lebesgue density. The rate can be refined if the measures are supported on low dimension
subdomains of dimension s and the rate becomes O(n−1/s) as shown in [Weed 2019]. Unfortunately, this
sample complexity is really slow for high dimensional data and it is known as the curse of dimension.
The higher the ambient dimension is, the slower the convergence of empirical estimators as we need an
exponential number of samples to estimate the optimal transport cost. In comparison, MMD has a sample
complexity independent from the dimension and of order O(n−1/2). This makes MMD loss easier to
estimate with empirical measures.

As the Sinkhorn Divergence interpolates between optimal transport and MMD, it is a natural question
to determine its sample complexity. It is provided in the following theorem:

Theorem 7.2.2 (Theorem 3, [Genevay 2019]). Consider two measures α and β on X and Y, two
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subset domains of Rd, with a C∞, L-lipschitz cost c. One has:

E(|Lε(αn, βn)− Lε(α, β)|) = O
(
e
κ
ε

√
n

(
1 + 1

εbd/2c

))
, (7.2)

where κ = 2L|X |+‖c‖∞ and the constants only depend on |X |, |Y|, d and ‖c(k)‖∞ for k = 0, · · · , [d/2].
c(k) denotes the k-th differential and |X | denotes the diameter of the space X .

The entropic-regularized OT’s sample complexity interpolates between the optimal transport and the
MMD samples complexities. Thus it can be more robust to the curse of dimensionality depending on the
regularization coefficient value. Straightforwardly, the Sinkhorn divergence has a similar sample complexity
as the sum of three entropic-regularized OT terms. This highlights the practical interest of using the
Sinkhorn divergence when data lie in high dimension instead of non-regularized optimal transport. The
Sinkhorn divergence sample complexity has been improved with weaker assumptions in [Mena 2019]
such as unbounded measures. They also introduced a central limit theorem of entropic-regularized OT
which can be applied to estimate the entropy of a random variable corrupted by a Gaussian noise. After
reviewing the sample complexity of empirical estimators, we finish this section by stating concentration
bounds of original OT and entropic-regularized OT estimators around their mean.

Concentration around the mean of Optimal Transport

One of the main questions in statistical applications is to understand the concentration of a given estimator
around the unknown parameter of interest. In our case, we want to measure the deviation and the
converge speed of our estimators to their expectation as the number of samples grows. A first result come
from [Weed 2019, Proposition 20]:

Proposition 8. Consider a compact space X , for all n ≥ 0 and 1 ≤ p < +∞, we have with probability
1− δ:

|W p
p (α, αn)− EW p

p (α, αn)| ≤
√

1
n

log(2
δ

) (7.3)

Note that this concentration result is only for the p-Wasserstein distance to the power p. For the
entropic-regularized OT, we have:

Proposition 9. Consider a compact space X a compact subspace of Rd, a C∞ and L-Lipschitz cost, for
all n ≥ 1 and 1 ≤ p < +∞, we have with probability 1− δ:

|Lε(α, αn)− ELε(α, αn)| ≤ κ1√
n

+ κ2

√
2 log(1/δ)

n
. (7.4)

With κ1, κ2 constants detailed in [Genevay 2019].

For concentration bounds, the convergence speeds are similar between the p-Wasserstein distance to
the power p and the entropic-regularized OT. These results are interesting because the concentration
bounds do not depend on the ambient dimension d contrary to the sample complexities. This means
that the estimator converges to its expectation at a rate of O(n− 1

2 ), where n is the number of samples.
In Section 8.3, we introduce concentration bounds for any optimal transport costs computed between
minibatches. After reviewing the sample complexity and the concentration properties of the optimal
transport estimator and its entropic-regularized counter-part, we now review its bias with respect to the
loss L(α, β).
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Biased empirical estimator

We saw that optimal transport suffers from the curse of dimension which penalizes its statistical properties.
Unfortunately another weakness occurs when dealing with empirical measures. The optimal transport
cost between empirical measures is a biased estimator of optimal transport between continuous measures,
i.e., Eαn,βn(L(αn, βn, C)) 6= L(α, β, c). This surprising result was first discussed in [Bellemare 2017]
and authors proposed a specific integral probability metric [Gretton 2012] to solve this problem. It was
studied in more details in [Bińkowski 2018], where authors showed that this bias also exists for all integral
probability metrics. The Sinkhorn Divergence and the entropic-regularized OT also suffer from such a
bias. In this manuscript, we show that the minibatch procedure does not suffer from a biased estimator
but at the price of losing the metric properties, see Section 8.2.1 for more details.

In machine learning, we deal with empirical measures and we have discussed the statistical properties
of the optimal transport in this context. In the next section, we discuss another important problem of
interest in machine learning, the optimization properties of optimal transport in a data fitting problem.

7.2.2 Minimizing Optimal Transport with respect to a parameter θ

In this section, we review the optimal transport optimization properties when the Wasserstein distance is
used to fit a model to empirical data. Given discrete samples (xi)ni=1 ∈ Rd from an unknown distribution
α, we want to fit a parametric measure θ 7→ βθ ∈M+

1 (Rd) to α using an optimal transport cost and the
empirical samples. Let Υ be a contrast function, we thus look for the solution of

θ̂ = argmin
θ∈θ

Υ(αn, βθ), (7.5)

where αn is the empirical distribution of sample (xi)ni=1. When the contrast function is chosen to be
the Wasserstein distance, the above optimization problem is known as Minimal Wasserstein estimation
[Bernton 2019]. Learning many generative models can also be framed as solving (7.5) [Genevay 2018].
To find the optimal θ? which minimizes the Kantorovich estimator, it is standard to rely on a gradient
descent procedure [Genevay 2018].

To ensure that minimizing the above equation leads to the correct minimum of Υ(α, βθ), we need
for the estimator Υ(αn, βθ) to be an unbiased estimator of Υ(α, βθ) with respect to the draw of the
data and that we can permute the expectation on the data and the gradient with respect to θ, i.e.,
Eαn,βn∇θOT (α, βθ) = ∇θEαn,βnOT (α, βθ) [Bottou 2018,Robbins 1951b]. We saw in the previous section
that the first condition is not met as the Wasserstein estimator is a biased estimator of the Wasserstein
distance between continuous distributions. However, minimizing a biased estimator can still lead to good
performances in practice. We now study whether the second condition is met by optimal transport or not.

Regularity with respect to the ground cost C

To prove that the exchange between the expectation and the gradient is possible, a common argument is
to rely on the differentiation lemma.

Lemma 7.2.1 (Differentiation lemma). Let V be a nontrivial open set in Rp and let P be a probability
distribution on Rd × Rd. Define a map F : Rd × Rd × V → R with the following properties:

• For any θ ∈ V,EP [|F(x,y, θ)|] <∞.

• For P-almost all (x,y) ∈ Rd × Rd, the map V → R, θ → F(x,y, θ) is differentiable.
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• There exists a P-integrable function ϕ : Rd × Rd → R such that |∂θF(x,y, θ)| ≤ ϕ(x,y) for all
θ ∈ V .

Then, for any θ ∈ V , EP [|∂θF(x,y, θ)|] < ∞ and the function θ → EP [F(x,y, θ)] is differentiable
with differential:

EP∂θ[F(x,y, θ)] = ∂θEP [F(x,y, θ)]. (7.6)

The proof can be found in [Klenke 2008, Theorem 6.28]. The optimal transport loss uses the parameters
θ in the ground cost, formally we have θ 7→ yθ 7→ C(x,yθ) 7→ L(αn, βn, C(X,Yθ)). Thus we need to
assure the differentiability of OT with respect to the the ground cost C as the probability vectors a and b
remain constant. To study this regularity, we use the Danskin theorem [Bertsekas 1973, proposition B.25]
which gives the regularity of a max problem. It is stated as follow:

Proposition 10 (Danskin Theorem). Let Z ⊂ Rd be a compact set and let φ : Rd×Z 7→ R be continuous
such that φ(., z) : Rd 7→ R is convex for each z ∈ Z. Then

1. The function
f(x) = max

z∈Z
φ(x, z) (7.7)

is convex and has directional derivatives given by f ′(x,y) = max
z∈Z(x)

φ(x, z;y) where φ(x, z;y) is the

directional derivatives of φ(., z) at x in direction of y and Z(x) is the set of maximum points in
(7.7), i.e.,

Z(x) = {z̄ ∈ Z|φ(x, z̄) = max
z∈Z

φ(x, z)}. (7.8)

In particular, if Z(x) is a singleton and φ(., z̄) is differentiable at x, then f is differentiable at x
and ∇xf(x) = ∇xφ(x, z̄).

2. If φ(., z) is differentiable for all z ∈ Z, and ∇xφ(x, .) is continuous on Z for each x, then the
subdifferential of f(x) is given by:

∂f(x) = conv{∇xφ(x, z)|z ∈ Z(x)},∀x ∈ Rd, (7.9)

where conv indicates the convex hull operation.

If we apply the Danskin Theorem to discrete optimal transport, the function φ corresponds to optimal
transport, x corresponds to the ground cost C and z corresponds to the transport plan Π. The set of
transport plan U(α, β) is indeed a compact set of measures [Santambrogio 2015, Theorems 1.4, 1.5, 1.7].
Regarding the continuity of optimal transport, the Frobenius product 〈C,Π〉 is obviously continuous and it
is linear in C and Π. As −φ is a linear function of C, it is a convex function of C. Unfortunately, original
optimal transport does not always have a unique solution as illustrated in Figure 7.1, thus we only have
access to subgradients. Regarding the entropic-regularized OT, the Kullback-Leibler divergence is also
a continuous function as the product and sum of continuous functions (we recall that their probability
vectors a and b have full support, i.e., ∀i, ai > 0). As the entropic-regularized OT is strongly convex, it
has a unique solution. Thus it is differentiable with respect to the ground cost C contrary to original OT.
So the differentiation lemma works only for entropic-regularized OT. To justify the convergence of a SGD
strategy with original OT, we rely on a concept of generalized gradients developed in the next section. It
allows us to exchange generalized gradients and expectations.
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Different OT solutions
Source samples
Target samples
First OT plan
Second OT plan

Entropic OT solutions ( = 0.1)
Source samples
Target samples
Optimal OT plan

Figure 7.1: Optimal transport plan illustration between 2D measures. The left image represents the original
optimal transport plans. The right image represents the unique entropic-regularized optimal transport plan.

Clarke regularity

As the original optimal transport is not differentiable, we can not apply standard first order optimization
methods for smooth functions. That is why instead we introduce the Clarke regularity (see [Clarke 1990]
for a full survey). A fundamental problem of nonsmooth analysis is to define a generalization of the notion
of derivative, that preserves some fundamental properties of the classical notion of derivative and allows
for a construction of calculus for nondifferentiable functions. Subdifferentials of convex functions are a well
known example of such a generalization. While extremely useful and important in convex analysis and
optimization, their obvious drawback is that they are defined only for convex functions. Clarke generalized
derivatives (also called Clarke subdifferentials) are well defined for all locally Lipschitz functions. We
remind the reader that a function f : X → R, where X is an open set in Rd, is called locally Lipschitz at
x ∈ X if there exists an open neighbourhood U of x, such that f is Lipschitz on U . Such a function is
called globally Lipschitz, if it is locally Lipschitz at all points of its domain. We first introduce Clarke
generalized directional derivatives:

Definition 11. Let f : X → R be a locally Lipschitz function defined on an open set X ⊂ Rd. Clarke
generalized directional derivative of f at x in direction v is denoted by f◦(x;v) and defined by:

f◦(x;v) = lim sup
h↓0,y→x

f(y + hv)− f(y)
h

.

For a given x, the function f◦(x;v) is finite, positively homogeneous, and a subadditive function of v.
We refer to Proposition 2.1.1 [Clarke 1990] for the proof of those properties. Positive homogenity and
subadditivity imply, that f◦(x;v) is a convex function of v. Clarke’s subdifferential at x is defined as the
subdifferential of f◦(x; ·) at the origin.

Definition 12. Let f : X → R be a locally Lipschitz function. The Clarke generalized gradient, also
called Clarke subdifferential is a set valued map defined by:

∂f(x) := {ξ : f◦(x;v) ≥ 〈ξ,v〉 for all v ∈ Rd}.

We use the symbol ∂f for the Clarke subdifferential, that is commonly used for subdifferentials of
convex functions. This is no accident and will not be a cause of confusion, as when a convex function is
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locally Lipschitz at x, for example when x is in the interior of its domain, then the two notions coincide
(see Proposition 2.2.7 [Clarke 1990]). In fact, Clarke generalized gradients share a number of important
properties with subdifferentials of convex functions. Namely for any locally Lipsthiz function f defined on
an open set X, ∂f(x) is a closed, compact set for all x ∈ X (Proposition 2.1.2(a) [Clarke 1990]) and the
multifunction ∂f has a closed graph (Proposition 2.1.5(b) [Clarke 1990]).

For such defined generalization of derivative, we have a well defined calculus, including Mean Value
Theorem (Theorem 2.3.7 [Clarke 1990]), chain rule (Theorem 2.3.9, Theorem 2.3.10 [Clarke 1990]) as well
as formulas for generalized derivatives of sums, products and quotients. A problematic aspect of this
calculus is that it usually only gives one-sided inclusions in the general case, similarly to how for two
convex functions f, g, we always have the following inclusion:

∂(f + g) ⊆ ∂f + ∂g,

while in general the reverse inclusion doesn’t always hold. A classical condition on the locally Lipschitz
function f under which those relations often become exact is regularity.

Definition 13. (Definition 2.3.4, [Clarke 1990]) A locally Lipschitz function f is said to be regular at x
provided that the following two conditions are satisfied:

1. For all v, the usual one-sided directional derivative f ′(x;v) exists,

2. For all v we have:
f ′(x;v) = f◦(x;v).

We will also say that a function f is minus regular, if −f is regular. An intuitive geometric interpretation
of regularity is that a function is regular if it doesn’t have "upwards dashes" in its graph. For example
x 7→ |x| is regular, since the dash is downwards, but x 7→ −|x| is not. Nevertheless, the function x 7→ −|x|
behaves equally well as the absolute value function from the perspective of calculus of generalized derivatives
since it is minus regular, see Remark 2.3.5 [Clarke 1990]. Finally, we present the most important result
which justifies the use of Clarke gradients: the generalization of the differentiation lemma to Clarke regular
functions.

Theorem 7.2.3 (Generalized gradients of integral functionals). Let (T, T , µ) be a positive measurable
space. Suppose that U is an open subset of a separable Banach space Θ, and that we are given a
family of functions ft : U 7→ R satisfying the following conditions:

• For each θ ∈ U , the map t 7→ ft(θ) is measurable.

• For some k(·) ∈ L1(T,R), for all θ1 and θ2 in U , and t in T , one has |ft(θ1) − ft(θ2)| ≤
k(t)‖θ1 − θ2‖.

Write f(θ) =
´
T
ft(θ)µ(dt) and suppose f is defined at some point θ in U . Then f is defined and

Lipschitz in U . Then we have

∂f(θ) = ∂

ˆ
T

ft(θ)µ(dt) ⊂
ˆ
T

∂ft(θ)µ(dt). (7.10)

If in addition each ft(·) is regular at θ, then f is regular at θ and the right hand side expression in
(7.10) is an equality.
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For the proofs of chain rule and generalized gradient of sum (or expectation) becoming exact for
regular functions, we refer once again to [Clarke 1990]. We show that optimal transport is Clarke regular
with respect to the ground cost C in Section 8.3.2.

In the next section, we finally introduce a key element of the rigorous study of minibatch OT.

7.3 U-statistics: generalized mean
In this section, we introduce the concept of U-statistics and related quantities. A U-statistic is an average
of a kernel h over m-tuples taken from an n-tuple X. Thus they are a good formalism to study minibatch
OT that allow us to derive statistical and optimization properties. We start by defining what U-statistics
are. We then review their use in machine learning and we finish by discussing their concentration bounds.

7.3.1 U-statistics definition and application in Machine Learning

In this section, we present U-statistics which are estimators of specific quantities. The theory of U-statistics
can be drawn back to [Hoeffding 1948,Hoeffding 1963]. We start by giving a formal definition.

Definition 14 (Complete U-statistics). Consider two sequences of i.i.d random variables X =
{x1, · · · ,xn} ∼ α⊗n and Y = {y1, · · · ,yn} ∼ β⊗n (n ≥ 2) taking values in a measurable space (T, T ).
Assume h : X⊗m × Y⊗m 7→ R is a X⊗m × Y⊗m measurable function, with 2 ≤ m ≤ n, and also that it is
a permutation symmetric map, meaning that h(x1, · · · ,xm,y1, · · · ,ym) = h(xσ1 , · · · ,xσm ,yσ1 , · · · ,yσm)
for any m-tuples of data and permutation σ. A two samples U-statistics of order m is defined as:

Un,m =
(

(n−m)!
n!

)2 ∑
I,J∈Pm

h(X(I),Y (J)), (7.11)

where Pm is the set of m-tuples without replacement and X(I) (resp Y (J)) represents the data whose
indices correspond to the indices in I (resp. J).

It can be interpreted as a generalized mean over m-tuples of data. We have presented above the
two samples U-statistics which results will be applied to optimal transport, but one sample and more
general U-statistics can be defined. Regarding the expectation of this quantity, Un,m is clearly an
unbiased estimator of Ex1,··· ,xm,y1,··· ,ymh(x1, · · · ,xm,y1, · · · ,ym) and one of its properties is that it has
the minimum variance among all unbiased estimators. A full review of U-statistics properties can be found
in [J Lee 2019]. The combinatorial number of terms makes this quantity hard to use in practice. In order
to remedy to this problem, we present a sub-sample quantity called incomplete U-statistics. Incomplete
U-statistics are defined as following.

Definition 15 (Incomplete U-statistics). Consider the notations and hypotheses from Definition 14. Pick
two integers k > 0 and 0 < m ≤ n. Then, we define the incomplete estimator:

Ũkn,m(a,b) := 1
k

∑
(I,J)∈Dk

h(X(I),Y (J)), (7.12)

where Dk is a set of k pairs of m-tuples uniformly drawn independently.

They allow a smaller computational cost than their corresponding complete estimator. We finish
the U-statistics definition by discussing a related quantity of interest called V-statistics. V-statistics are
related to U-statistics with the notable difference that they average the kernel h over m-tuples of indices
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with possibly repeated indices, i.e., I ∈ JnKm. So they are not necessarily unbiased estimators due to the
repetition of samples. They are defined as

Vn,m =
(

1
nm

)2 ∑
I,J∈JnKm

h(X(I),Y (J)). (7.13)

Applications in Machine Learning

U-statistics have been used in various machine learning problems as a performance criterion. We present
two examples where U-statistics are present: clustering and metric learning. More detailed examples can
be found in [Clémençon 2016]. We then finish this section by an application of U-statistics for comparing
probability distributions.

Clustering. Consider a distance d : X × X 7→ R+. Clustering is an unsupervised learning task that
consists in partitioning a set of data points x1, · · · ,xn in a feature space X into a finite collection of
subgroups depending on their closeness with respect to d, in other words data points in the same subgroup
should be closer to each other than to those lying in other subgroups. We thus want to evaluate the
quality of a partition P of X with respect to the clustering of an i.i.d. empirical data x1, · · · ,xn drawn
from α. This quality can be assessed through the within cluster point scatter, which takes the form of a
one sample U-statistic of order 2 [Clémençon 2008]:

Lclustering(P) = 2
n(n− 1)

∑
i<j

d(xi,xj).
∑
C∈P

I{(xi,xj) ∈ C}, (7.14)

The U-statistic kernel is h(xi,xj) = d(xi,xj).
∑
C∈P I{(xi,xj) ∈ C}.

Metric Learning. Choosing the appropriate metric for a given application is a fundamental problem.
For instance in domain adaptation as we detailed above, a joint metric on the extracted feature and
the label spaces gave state-of-the-art results [Courty 2017b]. In the context of supervised learning, the
goal of metric learning is to find a metric under which data with the same label are close to each other
and those with different labels are far away [Bellet 2015,Kulis 2013b]. Consider an i.i.d. empirical data
(x1,y1), · · · , (xn,yn) ∈ X1 = X ×{1, · · · , j} the empirical pairwise classification performance of a distance
d : X1 ×X1 7→ R+ can be evaluated by:

Lmetric(d) = 6
n(n− 1)(n− 2)

∑
i<j<k

I{d(xi,xj) < d(xi,xk),yi = yj 6= yk}, (7.15)

which is a one sample U-statistic of degree 3 with a kernel h((x,y), (x′,y′), (x?,y?)) = I{d(x,x′) <
d(x,x?),y = y′ 6= y?}.

U-statistics as divergence between probability measures. We recall that a MMD loss with a
positive kernel k is defined as:

‖α− β‖2k = Eα⊗α [k (x,x′)] + Eβ⊗β [k (y,y′)]− 2Eα⊗β [k(x,y)]. (7.16)

These above expectations can be estimated using empirical samples X ∼ α⊗n,Y ∼ β⊗n′ and with the
estimator

U2
MMD(X,Y ) = 1

n(n− 1)

n∑
i=1,i6=j

k(xi,xj) + 1
n′(n′ − 1)

n′∑
i=1,i6=j

k(yi,yj)−
2
nn′

n∑
i=1

n′∑
j=1

k(xi,yj), (7.17)
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which is composed of two one sample U-statistics of degree 2 and one sample average. When we have the
same number of empirical data n, we can estimate it with the estimator

U2
MMD(X,Y ) = 1

n(n− 1)

n∑
i 6=j

h(zi, zj), (7.18)

which is a one sample U-statistic and where the U-statistic kernel is equal to h(zi, zj) = k(xi,xj) +
k(yi,yj) + k(xi,yj) + k(xj ,yi). We can also estimate the MMD loss using V-statistics, which leads to a
biased loss:

V 2
MMD(X,Y ) = 1

n(n− 1)

n∑
i,j=1

k(xi,xj) + 1
n′(n′ − 1)

n′∑
i,j=1

k(yi,yj)−
2
nn′

n∑
i=1

n′∑
j=1

k(xi,yj), (7.19)

Note that in the V-statistics, the index i can be equal to the index j. Intuitively we expect the
empirical test statistic, whether biased or unbiased, to be small if α = β, and large if the distributions are
far apart. U-statistics have appealing concentration bounds and thus, their use is an important element
for the statistical study of MMD losses. We present the main U-statistics concentration results in the
next section.

7.3.2 U-statistics concentration bounds

In the case of U-statistics, we want to aim at estimating the concentration of Un,m around EUn,m. It
is the goal of this section to give the main standard result. We start by recalling the famous Hoeffding
lemma:

Lemma 7.3.1 (Hoeffding’s Lemma). Let the real random variable x ∈ [a, b] and denote Ex = µ. Then
for all s ∈ R:

E
[
es(x−µ)

]
≤ es

2(b−a)2/8. (7.20)

The proof can be found in [Hoeffding 1963]. This quantity gives us an upper bound on the moment-
generating function of any bounded random variable minus its mean value. The goal is now to apply this
lemma to U-statistics to get an Hoeffding inequality type bound and by doing so, we get the following
result:

Lemma 7.3.2. Let δ ∈ [0, 1] and m ≥ 1 be fixed. Suppose that the kernel h is bounded, i.e., 0 ≤ ‖h‖∞ ≤
Mh. We have a concentration bound between Un,m and EUn,m depending on the number of empirical i.i.d.
data X ∼ α⊗n and Y ∼ β⊗n, with probability 1− δ:

|Un,m − EUn,m| ≤Mh

√
log(2/δ)
2bn/mc (7.21)

Proof. We fix r = bn/mc. Let 0 ≤ k ≤ r − 1, we define the set Ik := {km+ 1, · · · , km+m}. Then we
define the function ζ as :

ζ(x1, · · · ,xn,y1, · · · ,yn) = 1
r

r−1∑
k=0

ζk(X(Ik),Y (Ik)) = 1
r

r−1∑
k=0

h(X(Ik),Y (Ik)). (7.22)
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We can see that ζ(x1, · · · ,xn,y1, · · · ,yn) is a sum of independent random variables. In the summation
below, σx or σy denotes a generic permutation of {1, · · · , n}. We compute :

r
∑
σx,σy

ζ(xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)) = r(n−m)!2
∑
I,J∈I

h(X(I),Y (J)) (7.23)

= r(n−m)!2
( n!

(n−m)!

)2
Un,m (7.24)

Thus we have Un,m =
( 1
n!
)2∑

σx,σy
ζ(xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)), which is a sum of independent

random variables. Thus, we now highlight the quantity Un,m − EUn,m for the different sums we have. As
our data are i.i.d., we get:

Un,m − EUn,m = 1
n!2

∑
σx,σy

ζ(xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n))− Eζ(xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n))

= 1
n!2

∑
σx,σy

1
r

r−1∑
k=0

(
ζk(X(Ikσx),Y (Ikσy ))− Eζk(X(Ikσx),Y (Ikσy ))

)
.

Where Ikσx (resp. Ikσy) represents the I
k indices after applying the permutation σx (resp. σy). In what

follows, we abbreviate the summation of ζ over the permutations σx, σy as
∑
σ ζσ. Thus, for t > 0, we

have:

P (Un,m − EUn,m ≥ t) ≤ e−λtE(eλ(Un,m−EUn,m))

= e−λtE
[
eλ

1
n!2

∑
σ
ζσ−Eζσ

]
≤ e−λt 1

n!2
∑
σ

E
[
eλζσ−Eζσ

]
≤ e−λt max

σ
E
[
eλζσ−Eζσ

]
,

where in the first and second inequalities, we used Markov’s and Jensen’s inequalities respectively.
Furthermore, for any ζσ0 , we have from Lemma 7.3.1 along with the bounded kernel assumptions

E
[
eλζσ0−Eζσ0

]
=

r−1∏
k=0

E
[
e
λ
r ζk−Eζk

]
≤

r−1∏
k=0

E
[
e
λ2
8r2

M2
h
]

= exp
(λ2

8rM
2
h

)
(7.25)

Thus P (Un,m − EUn,m ≥ t) ≤ exp
(
− λt+ λ2

8rM
2
h

)
. Optimizing over λ ∈ R+ gives the desired result.

The proof for the one sample U-statistics is the same. The exact same result is true for the V-statistics
and the proof can be found in [Hoeffding 1963, section 5.C]. Thus we can see that for a fixed m and δ,
the difference between the complete estimator and the expected quantity decreases at a rate of O(

√
m
n ).

This concentration result is at the heart of several of our contributions that we detail in the next chapter.

7.4 Conclusion
In this chapter, we presented the empirical interest of computing the optimal transport problem between
minibatches. We discussed the practical advantages as well as the different domains where it was used.
Then we presented several optimal transport properties that are at the foundation of our theoretical
analysis of minibatch OT. We reviewed the optimal transport sample complexities, the concentration
bounds, the estimator bias and the regularity with respect to the ground cost c. Finally, we presented the
U-statistics and we gave their concentration bounds.
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Several works were published to justify the minibatch paradigm. [Bernton 2019] studied statistical
inference, performed by the minimization over the parameter space of the Wasserstein distance between
model distributions and the empirical distribution of the data. They showed that for generative models, the
minimizers of the minibatch loss converge to the true minimizer when the minibatch size and the number
of data increase. [Sommerfeld 2019] considered another approach. They show that approximating OT with
minibatch OT is a good approximation loss and they exhibit a deviation bound between the two quantities.
In this manuscript, we propose a study of the use of minibatch OT as a loss function and we gather all
our contributions in the two next Chapters 8 and 9. We propose a rigorous formalism for all empirical
measures, which assures that all the mass is transported. Based on the formalism, we give a closed-form in
the case where samples lie in 1D and we illustrate the non optimal connections created by the minibatch
approximation on the resulting transport plan. We then study the loss properties of minibatch OT and
we show that minibatch OT is not a distance. We introduce a new loss function to recover some distance
properties and study its positiveness. We evaluated our different theoretical contributions on different
generative models and color transfer experiments. Finally, the different illustrations highlighted that the
non optimal connections could hurt the generalization of deep neural networks. We finally propose to use
a robust OT variant at the minibatch level to mitigate these connections and investigate the performances
on domain adaptation experiments.
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In this chapter, our goal is to study the minibatch approximation of optimal transport as a loss
function. We introduce a rigorous formalism and provide a theoretical study of minibatch optimal
transport. In the first section, we formalize the problem, develop empirical estimators of minibatch OT
for uniform probability measures and give a closed-form solution in the 1D case. Following the uniform
case, we extend empirical estimators to non uniform probability vectors. We then introduce a debiased
minibatch OT cost inspired by the Sinkhorn Divergence and review its positivity. We then study the
concentration bounds of minibatch OT and its optimization properties. Finally, we evaluate our debiased
loss functions and minibatch OT on several experiments. These contributions have been published in the
23rd International Conference on Artificial Intelligence and Statistics [Fatras 2020b] and a longer version
is currently submitted to SIAM Journal on Mathematics of Data Science [Fatras 2021c].
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Notations Before starting, we recall some notations that will be used in this chapter. Suppose we
have access to n data x ∈ Rd. We first assign a fixed index to each data and then get a n-tuple of data
X, i.e., X = (x1,x2, · · · ,xn). This assignation allows us to draw minibatches of data, and moreover,
permutations of assigned indices would not change any result.

As each element inside the data m-tuple has an index, it is then possible to characterize a m-tuple
of data with a corresponding m-tuple of indices. A generic element of indices I = (i1, . . . , im) ∈ JnKm is
called an index m-tuple. We recall that we denote by Pm the set of m-tuples without replacement. For an
index m-tuple I = (i1, . . . , im), X(I) = (xi1 , . . . ,xim) is the corresponding data m-tuple, and vice-versa,
any data m-tuple can be written X(I) for some index m-tuple I.

We finish by defining extra notations. The characteristic function of the set A, which is equal to 1 if
i ∈ A and 0 otherwise, is denoted 1A(i). With a slight abuse of notation we write i ∈ I if the index i
appears in the m-tuple I. We also write 1I(i) for tuples of indices. Regarding the sum over the elements of
I = (i1, · · · , im), we denote it as

∑
i∈I f(i) =

∑m
k=1 f(ik) and similarly for the product over the elements

Πi∈If(i) = Πm
k=1f(ik).

8.1 Expectation of Optimal Transport over minibatches

Throughout the minimization of a data fitting problem, the optimal transport cost can be computed
between minibatches of input empirical measures. This takes the form of 2 m-tuples of samples drawn
uniformly at random from the source and the target measures, to associate them a uniform weight 1/m
and to compute the optimal transport between these sub-measures. It is likely that the selected data
change over each iteration and this leads to minimizing the expectation of optimal transport between
minibatches of input measures. Formally, consider the minibatches (X,Y ) drawn from α⊗m ⊗ β⊗m, we
minimize

Emh = E
(X,Y )∼α⊗m⊗β⊗m

[h(um,um, Cm(X,Y ))], (8.1)

where h is an OT cost and um is a uniform vector of size m. The expectation over minibatches is
fundamentally different with respect to the original OT problem between the full input measures. In
this section, we start by building a rigorous formalism in the case of empirical measures, we also prove a
closed-form solution for 1D data of the minibatch OT problem and give 1D and 2D illustrations. Following
the formalism in the uniform case, we extend it to general discrete measures.

8.1.1 Empirical estimators in the uniform case

As we have only access to the empirical measures αn and βn, we need to define relevant estimators of Emh .
Relevant estimators would correctly estimate Emh but also transport the entire input measures um. We
start with defining a ground cost and for simplicity we consider the Euclidean distance, but our formalism
can be adapted to any ground cost. We consider:

Cm,p : (X,Y ) ∈ (Rm×d)2 7→ Cm,p(X,Y ) =
(
‖xi − yj‖p2

)
1≤i,j≤m ∈Mm(R), (8.2)

The power p is useful when we consider the p-Wasserstein distance. The expectation of the OT cost
over minibatches Emh can be estimated using U-statistics as presented in Section 7.3. Thus we define the
following estimator.
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Definition 16 (Minibatch OT). Let C = Cn,p(X,Y ) be a square matrix of size n. Given an OT loss
h ∈ {L,Wp,L

ε, Sε} and an integer m ≤ n, we define the following quantity:

h
m

C (X,Y ) := (n−m)!2
n!2

∑
I,J∈Pm

h(um,um, CI,J) (8.3)

where for I, J two m-tuples, C(I,J) is the matrix extracted from C by keeping the rows and columns
corresponding to I and J respectively.

A similar estimator can be built for Gromov-Wasserstein and we report the reader to its general
form in Section 8.1.3. We omit C when clear from context. While it is easier to get an upper bound of
minibatch OT and statistical results with the ground cost Cn,p(X,Y ), which is a square matrix of size n,
in practice we only need to compute C(I,J) as it is equal to Cm,p(X(I),Y (J)) and it reduces the memory
cost. These quantities represent an average of OT costs h over minibatches of size m. It is clear that
these estimators are two sample U-statistics of order 2m. When one of the measure is continuous while
the other is discrete, we have a semi-discrete variant of minibatch OT:

h
m

C (X, β) := (n−m)!
n!

∑
I∈Pm

E
Y ∼β⊗m

h(um,um, C(X(I),Y )) (8.4)

It can be seen as a one sample U-statistic of order m.

Remark 6. We recall that all OT costs are symmetric. This means that for any permutation I ′ of a
given tuple I, we have h(um,um, CI,J) = h(um,um, CI′,J). The symmetry property allows us to rewrite
the minibatch OT definition. Let Po,m be the set of ordered m-tuples without replacement, we can rewrite
(8.3) as:

h
m

C (X,Y ) :=
(
n

m

)−2 ∑
I,J∈Po,m

h(um,um, CI,J) (8.5)

In practical settings, since hmC (X,Y ) is an expectation over the combinatorial number of all possible
pairs of m-tuples I, J , it is often estimated by drawing only k such pairs of m-tuples uniformly, called
subsample quantity.

Definition 17 (Minibatch subsampling). Consider the notations from Definition 16. Pick two integers
k > 0 and 0 < m ≤ n. Then, we define the incomplete estimator:

h̃m,kC (X,Y ) := 1
k

∑
(I,J)∈Dk

h(um,um, C(I,J)) (8.6)

where Dk is a set of k pairs of m-tuples drawn uniformly at random.

The subsample quantity for exact optimal transport has then a computational complexity of
O(km3 log(m)). The value of k depends on the application and is discussed in more details in the
experimental section. We finish this paragraph with the following remark:

Remark 7. In (8.3) and (8.6), the dependence in the measure supports is implicit through the Euclidean
ground cost C, i.e., (X,Y ) 7→ C(X,Y ) 7→ h(u,u, C(X,Y )).

The transport plan is interesting to see the connections between samples, that is why we build similar
estimators.
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Transport plan estimators Classical OT losses such as L or its entropic variant Lε are directly
associated with a transport plan between measures. We now propose to similarly define a transport plan
associated to the proposed minibatch OT losses when it is possible. The main idea is that for each pair
of samples xi and yj , one can average the connections provided by all possible “transport plan between
minibatches”, with the following definition.

Definition 18 (minibatch transport plan). We denote by Opt(h,C,u,u) the set of all optimal transport
plans for h an OT cost, cost matrix C and a marginal u. Let um ∈ Rm be a discrete uniform probability
vector. For each pair of index m-tuples I = (i1, . . . , im) and J = (j1, . . . , jm) from J1, nKm, consider
C ′ := CI,J the m × m matrix with entries C ′k` = Cik,j` and denote by Πm

I,J an arbitrary element of
Opt(h,C,um,um). It can be lifted to an n× n matrix where all entries are zero except those indexed in
I × J :

ΠI,J = Q>I Πm
I,JQJ (8.7)

where QI and QJ are m× n matrices defined entrywise as

(QI)ki = δik,i, 1 ≤ k ≤ m, 1 ≤ i ≤ n (8.8)
(QJ)`j = δj`,j , 1 ≤ ` ≤ m, 1 ≤ j ≤ n. (8.9)

Each row of these matrices is a Dirac vector, hence they satisfy QI1n = 1m and QJ1n = 1m.

We also define the averaged minibatch transport matrix which takes into account all possible minibatch
couples.

Definition 19 (Averaged minibatch transport matrix). Consider as in Definition 16 an OT kernel h
and 1 ≤ m ≤ n. Given data n-tuples X,Y , consider for each pair of m-tuples I, J , the uniform vector of
size m,um, and let ΠI,J be defined as in Definition 18. The averaged minibatch transport matrix is

Πh,m(X,Y ) = (n−m)!2
n!2

∑
I,J∈Pm

ΠI,J (8.10)

Similarly to incomplete minibatch OT estimator, we can define incomplete minibatch transport plan
estimator. Let two integers k ≥ 1 and 1 ≤ m ≤ n:

Π̃h,m,k(X,Y ) := 1
k

∑
(I,J)∈Dk

ΠI,J , (8.11)

where ΠI,J is the lifted n× n OT plan between minibatches.

When there are no possible confusion, we omit the inputs X,Y . The average in the above definition
can be expressed as a finite weighted sum of ΠI,J . It is therefore well defined for an arbitrary choice of
optimal transport plans ΠI,J , and we do not need to concern ourselves with the measurability of selection
of optimal transport plans. The same will be true whenever an average of optimal transport plans will be
taken in the rest of the manuscript, since all results concerning such averages will be nonasymptotic. We
will therefore avoid further mentioning this issue, for the sake of brevity. Note also that the Sinkhorn
divergence involves three terms, hence three transport plans, which explains why we do not attempt to
define an associated averaged minibatch transport matrix.

This construction is consistent with the construction of minibatch OT. Indeed, for an exact OT loss
L or a p-Wasserstein distance to the power p, W p

p , it is straight forward to check that hmC (X,Y ) =
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〈Πh,m(X,Y ), C〉. Thus as Πh,m(X,Y ) is an average of connections, we want to known if all source and
target mass are entirely transported, i.e., we want to check that Πh,m(X,Y ) is an admissible transport
plan between uniform probability vectors un. We have the following proposition

Proposition 11. The transportation plan Πh,m(X,Y ) is an admissible transportation plan between the
full input measures un,un. Furthermore, for an exact OT loss kernel h or p-Wasserstein distance to the
power p we have : hmC (X,Y ) ≥ h(un,un, C).

The proof can be found in Appendix A.1.2. The fact that Πh,m(X,Y ) is an admissible transportation
plan means that even though it is not optimal, we still transport data similarly to OT. Finally, note that
because incomplete U-statistics are not U-statistics in general, the incomplete minibatch transport plan
estimator does not define a transport plan between the full measures in general, i.e., their marginals are
not equal to uniform probability vectors.

8.1.2 Illustration examples on 1D ans 2D data

In this section, we illustrate the minibatch OT framework on two simple cases. The first case is when
data lie in 1D. Thanks to the 1D OT close-formed, detailed in Section 2.2.3, we can express a closed-form
for minibatch OT and we illustrate the minibatch OT plan for several values of minibatches. We then
illustrate the transport plan for 2D toy data.

Closed-form solution for 1D data. We recall that the solution of the 1D OT problem can be
computed with a sorting algorithm which gives an appealing O(n log(n)) complexity compare to the initial
O(n3 log(n)) of a network simplex solver.

We assume (without loss of generality) that the points are ordered on the R line. In such a case, we can
compute the 1D Wasserstein 1 distance with cost c(x,y) = |x− y| as: W (u,u) = 1

n

∑n
i=1 |xi − yi| and

the OT matrix is simply an identity matrix scaled by 1
n . Based on the symmetry definition of minibatch

OT (8.5) and after a short combinatorial calculus (given in appendix), the 1D minibatch transport plan
coefficient between sorted samples (Πh,m)j,k can be computed as:

(Πh,m)j,k = 1
m

(
n

m

)−2 imax∑
i=imin

(
j − 1
i− 1

)(
k − 1
i− 1

)(
n− j
m− i

)(
n− k
m− i

)
where imin = max(0,m − n + j,m − n + k) and imax = min(j, k). imin and imax represent the sorting
constraints.

We show on the first row of Figure 8.1 the minibatch OT plans Πh,m with n = 20 samples for different
values of the minibatch size m. On the second row of the figure a plot of the measures in several rows
of Πh,m, to illustrate the number of connections. We give the OT plans for entropic and quadratic
regularized OT between full measures for comparison purpose. It is clear from the figure that the OT
matrix densifies when m decreases, which is a similar effect to entropic regularization. Regarding the
quadratic regularization, the spread of mass is more localized and preserves the sparsity as discussed
in [Blondel 2018].

While the entropic regularization spreads the mass in a similar manner for all samples, minibatch
OT concentrates the mass at the extremities. Note that the minibatch OT plan solution is for ordered
samples and does not depend on the position of the samples once ordered, as opposed to the regularized
OT methods. This will be better illustrated in the next example.

Finally, a closed-form is also available in the case of drawing with replacement. We provide it in
appendix. Unfortunately, its computational complexity makes it hard to use in practice.
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Figure 8.1: Several OT plans between measures with n = 20 samples in 1D. The first row shows the minibatch
OT plans Πh,m(u,u) for different values of m, the second row provides the shape of the measures on the rows of
Πh,m(u,u). h is the exact OT. The two last columns correspond to classical entropic and quadratic regularized
OT.
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Figure 8.2: Several OT plans between 2D measures with n = 10 samples. The first row shows the minibatch OT
plans Πh,m(u,u), where h is the exact optimal transport cost, for different values of m. The second row provide a
2D visualization of where the mass is transported between the 2D positions of the sample.

Minibatch Wasserstein in 2D We illustrate several OT plans between two empirical measures of
10 2D-samples each in Figure 8.2. We consider the MBOT transport plan for several batch sizes, the
entropic and quadratic regularized OT between full measures. We use two 2D empirical measures (point
cloud) where the samples have a cluster structure and the samples are sorted w.r.t. their cluster. We first
discuss the sampling without replacement. We can see from the OT plans in the first row of the figure
that the cluster structure is more or less recovered with the regularization effect of the minibatches (and
also regularized OT). On the second row one can see the effect of the geometry of the samples on the
spread of mass. Similarly to 1D, for Minibatch OT, samples on the border of the simplex cannot spread
as much mass as those in the center and have darker rows. This effect is less visible on regularized OT.

The defined formalism supposed we had uniform probability vectors for the full measure and we
considered the probability vectors as uniform at the minibatch level. However as justified by Proposition
11 the above formalism would output a transport plan with uniform marginals. Thus in the case of non
uniform probability vectors such as in ARWGAN (see Chapter 6), the formalism would not give the



8.1. Expectation of Optimal Transport over minibatches 111

correct marginals and a GAN using minibatch OT would generate data similar to all training data. We
also supposed that we had a sampling of data without replacement to form a minibatch, which does not
correspond to the GAN sampling. In the next section, we extend our formalism to non uniform weights
and to other sampling.

8.1.3 Empirical estimators in the general case

In this section, we generalize the minibatch OT formalism that we defined in Section 8.1.1. We aim at
defining a formalism which can consider different samplings than sampling without replacement and other
probability vectors than the uniform.

We recall that discrete probability measures can either be represented as a sum of Diracs
∑
i aiδxi or with

a probability vector and the support of measures (a,X). We chose the latter as it is easier to define formal
mathematical objects when we consider discrete probability measures and for consistency with [Peyré 2019].
Indeed sum of Diracs are equal for different indices assignations, i.e.,

∑n
k=1 aikδxik =

∑n
k=1 akδxk , the

result of selecting an element with a given index from the minibatch would depend on the order of Diracs.
One can define a discrete probability measure from a probability vector a ∈ Σn and locations X in a
canonical way by αn =

∑n
i=1 aiδxi (see remark 2.1 [Peyré 2019]), and we will often implicitly use this

assignment throughout the rest of the chapter (see remark 2.11 [Peyré 2019]).
To define minibatch OT losses for general probability vectors a,b, a first ingredient is a reweighting

function w that takes as inputs a discrete probability a ∈ Σn and an m-tuple of indices I = (i1, . . . , im)
and outputs a discrete probability vector aI = w(a, I) ∈ Σm. A second ingredient is a parametric family
of distributions {Pa : a ∈ Σn} such that for each a ∈ Σn, Pa is a probability distribution over m-tuples I
of indices. The law on probability tuples assures that we have a weighted average of OT kernels and its
combination with a suited reweighting function assures all samples are transported. Those ingredients are
needed to get unbiased estimator of minibatch OT. Formally, we need:

Definition 20 (Reweighting and probability functions). A reweighting function is a map w of the form :

w : (a, I) ∈ Σn × JnKm 7→ Σm (8.12)

A probability function is a map P of the form :

P : a ∈ Σn 7→ Pa ∈ P
(
JnKm

)
, (8.13)

where P
(
JnKm

)
is the set of probability distributions over the set of m-tuples I of indices JnKm.

We are now ready to give a formal definition of minibatch OT losses. The idea is to compute the
expectation of the OT kernels over minibatches I, furthermore we need the reweighting functions to assure
that the OT kernels has probability vectors as inputs.

Definition 21 (Minibatch Wasserstein). Let C = Cn,p(X,Y ) be a matrix of size n× n. Given a kernel
h ∈ {L,Wp,W

p
p ,L

ε, Sε}, two reweighting functions w1, w2 and two probability functions P 1, P 2 as in
(8.12) and (8.13) respectively, we define the minibatch OT loss hmw1,w2,P 1,P 2 for any a,b ∈ Σn by :

h
m

w1,w2,P 1,P 2,C(a,b) := EI∼P 1
a
EJ∼P 2

b
h
(
w1(a, I), w2(b, J), C(I,J)

)
, (8.14)

where for I, J two m-tuples, C(I,J) is the matrix extracted from C by keeping the rows and columns
corresponding to I and J respectively. Regarding the incomplete estimator, we have:

h̃m,kw,P (a,b) := 1
k

∑
(I,J)∈Dk

h
(
w(a, I), w(b, J), C(I,J)

)
(8.15)
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where Dk is a set of k pairs of m-tuples drawn independently from the joint distribution Pa ⊗ Pb.

Similarly we have for Gromov-Wasserstein:

Definition 22 (Minibatch Gromov-Wasserstein). Let w1, w2, P
1, P 2 be as in Definition 21. We define

for two ground costs C1 = Cn,p(X,X) and C2 = Cn,p(Y ,Y ). The minibatch Gromov-Wasserstein is
defined as:

GWm

w1,w2,P 1,P 2,C1,C2(a,b) := EI∼P 1
a
EJ∼P 2

b
GW

(
w1(a, I), w2(b, J), C1

I,I , C
2
J,J

)
, (8.16)

where C1
(I,I) (resp. C2

(J,J)) is the matrix extracted from C1 (resp. C2) by keeping the rows and columns
corresponding to I and I (resp. J and J).

Like in the uniform probability vectors case, the dependence of minibatch OT in the ground cost
C will often be omitted when there is no possible confusion. When the reweighting functions and the
probability laws on tuples are the same (equal to w and P respectively), we use the following shorthand
notations for the above losses : hmw,P . With a slight abuse of notation, we also use the notation hmw,P for
the GW loss. Regarding the incomplete estimator, the notable difference is that now the minibatches are
drawn according to Pa ⊗ Pb.

The loss h(a,b) corresponds to an averaged optimal transport distance between sub-probability
distributions of input probability distributions a and b. The minibatch OT losses define weighted U-
statistics and V-statistics [J Lee 2019] where the weights depend on the input probability vectors a,b
and on the laws over index m-tuple Pa, Pb. This connection turns out to be central to get quantitative
statistical results. Concrete versions of these minibatch OT losses are obtained by specifying its ingredients
h, w, and P . We now give a few examples of some reweighting functions and families of distributions.

Example 1 (Uniform reweighting function). The uniform reweighting function wU is independent of the
input discrete probability a. It is defined coordinatewise for any m-tuple I = (i1, . . . , im) by wU

k(a, I) = 1
m ,

1 ≤ k ≤ m and yields to a uniform probability vector in Σm.

Example 2 (Normalized reweighting function). The normalized reweighting function wW normalizes the
restriction of the input discrete probability a to the support of I, to ensure it remains a discrete probability.
It is defined coordinatewise for any m-tuple I = (i1, . . . , im) by wW

k(a, I) = aik∑m

p=1
aip

, 1 ≤ k ≤ m, which is
again a probability vector even if entries in I are repeated.

For instance, consider four X = (x1,x2,x3,x4) data with weights a = ( 1
4 ,

1
8 ,

1
8 ,

1
2 ), if one picks the

batch I = (2, 4), the reweighting functions give wW(a, I) = [ 1
5 ,

4
5 ] and wU(a, I) = [ 1

2 ,
1
2 ]. In the case of a

uniform discrete probability u ∈ Σn, the two reweighting functions are identical.
Regarding the parametric law on indices, which gives the probability to pick a given batch of samples,

we focus on two constructions depending whether sampling is done with or without replacement. Indeed
in practice, most of work use a sampling without replacement, and it is easy to design this case with our
formalism. We first consider sampling with replacement.

Example 3 (Drawing indices with replacement). Drawing i` ∈ JnK, 1 ≤ ` ≤ m i.i.d. (with replacement)
from the discrete probability distribution a ∈ Σn yields the law on indices

P U
a (I) = Πi∈Iai. (8.17)

Now we give an example of drawing without replacement. The idea is to give a zero probability to
pick a batch with repeated indices.
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Example 4 (Drawing indices “without replacement”). Given a discrete probability distribution a ∈ Σn,
it is also possible to draw distinct indices i` ∈ JnK, 1 ≤ ` ≤ m, by defining P W

a (I) = 0 if the m-tuple I has
repeated indices, otherwise

P W
a (I) = 1

m

(n−m)!
(n− 1)!

∑
i∈I

ai. (8.18)

With a uniform discrete probability, ai = 1
n , 1 ≤ i ≤ n, this law corresponds to drawing the m-tuples

without repeated indices I uniformly at random among all possible m-tuples without repeated indices, i.e.,
drawing the m indices ip without replacement. By abuse of language, we will sometimes refer to this law
as a draw "without replacement" even for non uniform a.

Note that the minibatch OT between uniform probability vectors in Definition 16 can be recovered
with the sampling P W

a and the reweighting functions wW, wU.

Minibatch transport plan. Regarding the transport plan, we can also generalize the formulation
(8.10).

Definition 23 (Averaged minibatch transport matrix). Consider as in Definition 21 an OT kernel h, two
reweighting functions w1, w2 and a family of probability distributions {Pa : a ∈ Σn} over index m-tuples
from J1, nK, where 1 ≤ m ≤ n. Given discrete probabilities a,b ∈ Σn and data tuples X,Y , consider for
each pair of m-tuples I, J the discrete probabilities aI = w1(a, I) ∈ Σm, bJ = w2(b, J) ∈ Σm. Let ΠI,J

be defined as in Definition 18 but Πm
I,J is an optimal transport plan with marginals aI ,bJ . The averaged

minibatch transport matrix is

Πh,m

w1,w2,Pa,Pb
(a,b) = EI∼Pa,J∼PbΠI,J (8.19)

where ΠI,J is the lifted n× n OT plan between minibatches. For brevity this is simply denoted Πh,m

w,P when
w = w1 = w2 and P = Pa = Pb are clear from context. We can also generalize the incomplete transport
plan as folllows:

Π̃h,m,k
w,P (a,b) := 1

k

∑
(I,J)∈Dk

ΠI,J . (8.20)

While the n× n matrix defined in (8.19) is candidate to be transport plan between a and b, we need
to check if it is indeed admissible, i.e., if it has the right marginals. This is why it is a priori only called
an averaged minibatch transport matrix.

Proposition 12. If the reweighting function w and the parametric distribution on m-tuples Pc satisfy
the following admissibility condition

EI∼PcQ
>
I w(c, I) = c, ∀c ∈ Σn (8.21)

Then with the notations of Definition 19, the averaged minibatch transport matrix Πh,m

w,P is an admissible
transport plan between the discrete probabilities a,b ∈ Σn in the sense that Πh,m

w,P1n = a and 1>nΠh,m

w,P = b>.
Considering the Wasserstein kernel h = W p

p , the minibatch loss defined in (16), as the associated coupling
Πh,m

w,P is not the optimal coupling of the full OT problem, it satisfies

h
m

w,P (a,b) = 〈Πh,m

w,P , C〉F ≥ h(a,b). (8.22)
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General MBOT GAN, w=20, =0.5

Generated data
Original data

Uniform MBOT GAN

Generated data
Original data

Figure 8.3: Difference between generated 2D data from different MBOTGAN. We used the uniform formalism
(left) and the general formalism with replacement hm

U (right). We use the minibatch OT loss as a loss function
for GANs. The black line represents the classifier boundary decision. The hyperparameters for the reweighted
distributions are set to κ = 0.5 and w = 20. We trained the generator for 30000 iterations.

Under assumption (8.21) one can safely call Πh,m

w,P (a,b) an averaged minibatch transport plan. Our
main examples of reweighting functions and parametric probability distributions indeed satisfy the
admissibility condition (8.21).

Lemma 8.1.1 (Admissibility). The uniform reweighting function wU and the parametric law "with
replacement" P U satisfy the admissibility condition (8.21). The admissibility condition also holds for the
parametric law without replacement P W with the normalized reweighting function wW.
In contrast for wU, P W when a is not uniform, the resulting OT matrix is not a transportation plan.

Empirical justification. We introduce some notations for the aforementioned Examples 1, 2, 3, 4.
When referring to these 4 examples, we define two estimators. hmW (respectively Πh,m

W ) with law P W
a and

reweighting function wW stands for the minibatch Wasserstein loss (respectively minibatch OT plan) over
the m-tuples without repetitions. And hmU (respectively Πh,m

U ) with law P U
a and reweighting function wU

stands for the minibatch Wasserstein loss (respectively minibatch OT plan) over the m-tuples I.
We now justify empirically that our general formalism can deal with non uniform probability vectors.

To this end, we consider generating misclassified data for a pre-trained classifier using the reweighted
distribution from ARWGAN (see Chapter 6). To generate data, we use a GAN with minibatch OT loss as
loss function. The ground cost is the squared Euclidean cost and we use either the uniform or the general
formalism h

m

U . We follow the experimental setting from Section 6.3.1 and the results can be found in
Figure 8.3. It shows that our uniform formalism generates data following the empirical data while our
general formalism generates data which are misclassified by the pre-trained classifier.

Drawing data with or without replacement

Our general flexible formalism allows us to define several minibatch strategies by playing with the
probability law on tuples. The laws can be also different between the source and the target distributions.
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Figure 8.4: Difference between transport plan estimators with 2D distributions and n = 5 samples. Each column
gives the OT plan Πh,m

W (u,u) or Πh,m
U (u,u) (top) and the shape of the distributions on the rows of the OT plans

(bottom). We consider the exact optimal transport cost as h.

In particular, as given in examples, the cases of drawing with or without replacement. An estimator based
on sampling without replacement is the most common practice when we have access to n samples. While
this drawing has been investigated for minibatch OT losses, the case with replacement, which appears
in the GANs formalism, remains an open question that we aim at answering. The minibatch OT losses
represent a weighted sum of Wasserstein distance over batches of size m. In the case of sampling without
replacement, they are generalized unbiased U-statistics while with a sampling with replacement, we get
generalized biased V-statistics [J Lee 2019,Gretton 2012]. Precisely, they are two sample U-statistics or
V-statistics of order 2m (see [J Lee 2019]) and h is a U-statistic kernel. Interestingly, similar biased and
unbiased estimators have been designed to estimate MMD [Gretton 2012].

Finally an important parameter is the value of the minibatch size m. In the case of sampling without
replacement, we remark that the minibatch procedure allows us to interpolate between OT, when m = n

and averaged pairwise distance, whenm = 1. This property is not shared by the sampling with replacement.
Indeed when m = n, it does not correspond to original OT due to the repetition of data. It only converges
to the true OT when n → ∞. This effect is illustrated in Figure 8.4. We consider the same setting as
in Figure 8.2 but with 5 empirical data. On each column we show the transport plan and the shape of
connection between samples. We can see that the estimator Πh,m

U (u,u) has always a denser plan, i.e. a
bigger number of connections, than the estimator Πh,m

W (u,u). In particular, when m = n = 5, we get the
optimal transport plan with Πh,m

W (u,u) while we do not recover it with Πh,m

U (u,u) due to the fact that
samples can be repeated. Now that we have rigorously defined how we can build minibatch Wasserstein
losses between empirical measures, we study its loss properties.

8.2 Debiased minibatch Optimal Transport: a Sinkhorn divergence
approach

In this section, we introduce a new OT cost based on minibatch OT. It follows the form of the Sinkhorn
Divergence. We start by motivating this loss function by reviewing the distance properties of minibatch
OT. After, we introduce our loss function to recover some loss of minibatch OT and finally we review its
positivity.
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8.2.1 Metric properties: a fundamental difference

The optimal transport cost can define a distance between probability distributions with some specific
ground cost. It is of interest to see if these properties remain true for minibatch OT. Answering this
question is the purpose of this section and we start with the following proposition.

Proposition 13 (Estimator properties). The minibatch OT losses enjoy the following properties:

• The losses are symmetric

• The losses are not distances

Proof. We give the proof that minibatch OT losses are not distances. Consider a uniform probability
vector and random 3-data tuple X = (x1,x2,x3) with distinct vectors. As hmw,P is a weighted sum of
positive terms, it is equal to 0 if and only if each of its term is 0. But consider the minibatch term
I1 = (i1, i2) and I2 = (i1, i3), then obviously h(w(u, I1), w(u, I2), C(X(I1),X(I2))) 6= 0 as x2 6= x3,
finishing the proof.

The symmetry of the losses is inherited from the optimal transport problem which is itself symmetric.
The loss of the separability distance axiom means that for data fitting problems, the final solution will
not match the target distribution. The axiom is recovered for minibatches without replacement when
m = n as we recover the original OT formulation.

We defined minibatch OT losses and reviewed their basic properties. In what follows, we propose an
elegant formulation which fixes this loss.

8.2.2 Debiasing minibatch Wasserstein losses

As we have shown before, the minibatch OT losses are not distances, for general probability vectors and
data n-tuple X, hmw,P (b,b) > 0. This leads to an undesirable situation when one uses it for learning
purposes as the final solution is not the target distribution but a shrunk version of it. Hence, we would
like to debias the losses to get hmw,P (b,b) = 0. We debias the minibatch OT losses by following the same
idea as the Sinkhorn divergence, we remove half of each self term h

m

w,P (a,a) and hmw,P (b,b).

Definition 24 (Debiased Minibatch Wasserstein estimators). Let C = Cn,p. Consider 1 ≤ m ≤ n be an
integer and h be the OT cost L, the entropic loss Lε, the Sinkhorn divergence Sε, or the Gromov-Wasserstein
distance GW for some ground cost c(x,y), we define the following quantities:

Λh,mw,P,C(X,Y )(a,b) := h
m

w,P,C(X,Y )(a,b)− 1
2
(
h
m

w,P,C(X,X)(a,a) + h
m

w,P,C(Y ,Y )(b,b)
)
, (8.23)

That we note when it is clear of context Λh,mw,P and its incomplete counter part:

Λ̃h,m,kw,P,C(X,Y )(a,b) := h̃m,kw,P,C(X,Y )(a,b)− 1
2
(
h̃m,kw,P,C(X,X)(a,a) + h̃m,kw,P,C(Y ,Y )(b,b)

)
. (8.24)

Remark 8. We keep making the slight abuse of notation to consider all OT kernels with h, but we explicit
the loss Λ for a Gromov-Wasserstein loss. We note the ground cost Cn,p,1 and Cn,p,2 as C1 and C2 for
sake of readability. With the GW kernel, the loss Λ is equal to:

Λh,mw,P,C1(X,X),C2(Y ,Y )(a,b) := h
m

w,P,C1(X,X),C2(Y ,Y )(a,b)

− 1
2
(
h
m

w,P,C1(X,X),C1(X,X)(a,a) + h
m

w,P,C2(Y ,Y ),C2(Y ,Y )(b,b)
)
, (8.25)
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Figure 8.5: Positivity counter example. (Left) source and target distributions for a given perturbation. (Middle
and right) Comparison of different estimator values for ΛW1 and ΛW2 with an Euclidean ground cost between the
distributions. The red line is the y-axis equals to 0.

It is straight forward to see that Λh,mw,P (b,b) = 0. A similar loss has been proposed in [Salimans 2018] as
a generalized energy distance using the entropic Wasserstein distance as metric. While their loss debiased
the minibatch bias, it still had a bias from the entropic regularization. They then relied on the energy
distance properties to argue positiveness. The downside of this loss is that it needs to rely on a metric
to be positive, however the entropic regularized optimal transport is not a metric between probability
distributions as W ε(a,a) 6= 0.

We bring insights to this debiased loss and compare its differences to the minibatch OT losses both
mathematically and empirically. We use our loss Λh,mw,P with the Wasserstein distance and Sinkhorn
divergence because they respect the distance separability axiom. Unfortunately, we prove that even if we
consider the Wasserstein distance, this loss is not positive and we will give counter examples.

8.2.3 Positivity: a negative counter example

The loss function Λh,mw,P is composed of three terms of the form of hmw,P , then it is possible to estimate it
with the different estimators hmW and hmU we defined in Section 8.1.3. When estimated with hmW (resp hmU ),
we denote Λh,mW (resp. Λh,mU ). Let us consider 8 points on the unit circle equally distributed. Then let
us add a perturbation as a rotation to each point position, where the rotation vary from 0 to π. The
perturbed distribution becomes our target distribution. When computing the quantity ΛWp(u,u), with
p ≥ 2 and an Euclidean ground cost, it can return a negative value. We give the variations of the debi-
ased minibatch OT losses in function of the pertubartion in Figure 8.5 for both the estimators hmW and hmU .

The loss function might not be always positive for particular case but in practice, we always had a
positive loss and it performed better than the biased minibatch OT losses. Furthermore, while we have
been able to find counter examples for p ≥ 2, we have not found any counter example for W1. Hence we
conjecture that ΛW1 might be a positive loss function, and the proof is left as future work, as we did not
succeed to formally proving it.
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8.3 Learning with minibatch Optimal Transport: concentration
bounds and gradients

In this section, we present different deviation bounds for minibatch OT. We study the case where input
probability measures have compact supports or are sub-Gaussian probability measures. We also study the
case where we have a bounded cost. We then review the optimization properties of minibatch OT and see
if it can be minimized with modern optimization techniques.

8.3.1 Concentration bounds between estimators and their expectations

We want to find similar results to the U-statistics concentration bounds (see Theorem 7.3.2) for our
estimator h̃m,kw,P (a,b) and its expectation Eh̃m,kw,P (a,b). We will give a maximal deviation bound for several
scenarios. For bounded measures, we will prove that we have a Hoeffding-type inequality. Then we
relax the boundness condition on probability measures to give a concentration bound for sub-Gaussian
probability measures. Finally, we give a deviation bound in the case of a bounded cost and general
probability measures.

In this context, the probability vectors (a(n)) and (b(n)) are sequences which depend on the number of
data n. More precisely (a(n)) and (b(n)) are sequences of vectors such that for each n ∈ N, a(n),b(n) ∈ Σn,
we denote the space of these sequences as (a(n)), (b(n)) ∈ Σ. The sequences of probability vectors (a(n))
and (b(n)) can not be taken arbitrarily if we want to guarantee convergence. Indeed, they appear in the
expectations over the index m-tuples in hmw,P and we need to bound them to apply Hoeffding’s lemma.
Hence we rely on local constraints that the probability vectors a and b must verify.

Definition 25 (Local averages conditions). Let (a(n)) ∈ Σ and two integers n,m ∈ N∗ such as n ≥ m.
We say that (a(n)) verifies the local mean condition if there exists a constant D > 0 and γ ∈ (0, 1] such
that for any n ∈ N∗ and I ⊂ JnK with |I| = m we have:

1
m

∑
i∈I

a(n)
i ≤ D

nγ
. (8.26)

We write that (a(n)) satisfies LocA(m, γ,D)) (or LocA(m, γ)) when the constant D is implicit).
(ii) Analogously, (a(n)) is said to verify the local geometric mean condition if there exists a constant D > 0
and γ > 0 such that for any n ∈ N∗ and I ∈ JnKm we have

(
Πi∈Ia(n)

i

) 1
m ≤ D

nγ
. (8.27)

We write that (a(n)) verifies LocG(m, γ,D)) (or LocG(m, γ)) when the constant D is implicit).

Intuitively, these conditions require that the product or the sum of any m elements of (a(n)) do not
get too big. A straight forward example is the uniform vector u(n) which respects LocA(m, 1, 1) for the
local mean condition and LocG(m, 1, 1) for the local product condition. Thus Eq.(8.26) naturally extends
and quantifies the fact that a sequence has uniformly controlled m-averages. We also observe that for
any generic sequence (a(n)) in Σ verifies LocA(m, 0, 1

m ). Regarding the local product condition, Eq.(8.27)
extends the fact that a sequence has uniformly controlled m-products. We illustrate the local constraints
on the simplex in Figure 8.6 with python ternary [Harper 2017]. We have the following result about the
local constraints:
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Figure 8.6: LocA and LocG local constraints illustrations on the simplex with m = 2 and n = 3.

Lemma 8.3.1. Let m ∈ N∗, γ > 0 and D > 0. Let (a(n)) ∈ Σ be a sequence of probability vectors. The
following statements hold:
(i) If (a(n)) verifies LocA(m, γ,D) or LocG(m, γ,D) then γ ≤ 1.
(ii) If (a(n)) is LocA(m, γ,D) then (a(n)) is LocG(m, γ,D).

Bounded data. For bounded data, we show that in order to obtain reasonable convergence properties
of the estimators hmw,P (a(n),b(n)) we need to ensure that the sequences (a(n)) and (b(n)) verify the local
condition with enough decay, e.g. (a(n)), (b(n)) are LocA(m, γ) or LocG(m, γ) for a γ sufficiently close to 1.

Theorem 8.3.1 (Maximal deviation bound for compactly supported distributions). Let δ ∈ (0, 1),
k > 1 an integer and m > 1 be a fixed integer. Let C = Cn,p be as in (8.2). Consider two compactly
supported distributions α, β, two n-tuples of empirical i.i.d. data X ∼ α⊗n,Y ∼ β⊗n and a kernel
h ∈ {Wp,W

p
p ,L

ε, Sε,GW}. Let the reweighting function w and the probability law over m-tuple P be
as in Examples 1, 2, 3, 4. Let the sequences of probability vectors (a(n)) ∈ Σ and (b(n)) ∈ Σ satisfy
LocA(m, γ,D) and let D > 0 and γ ∈ ( 3

4 , 1]. We have a deviation bound for the sampling without
replacement between h̃m,kw,P (a(n),b(n)) and Ehmw,P (a(n),b(n)) depending on the number of empirical
data n and the number of batches k:

P

|h̃m,kW (a(n),b(n))− EhmW (a(n),b(n))| ≥M
(

2 D2m
1
2

n2(γ− 3
4 )

√
2 log(2

δ
) +

√
2 log( 2

δ )
k

) ≤ δ, (8.28)

where M is a constant depending on the diameters of distribution supports. And for the sampling
with replacement, let the sequences of probability vectors (a(n)), (b(n)) verify LocG(m, γ,D) for some
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γ ∈ (1− 1
4m , 1] and D > 0, we have:

P

|h̃m,kU (a(n),b(n))− EhmU (a(n),b(n))| ≥M
(

2 D2mm
1
2

n2m( 1
4m−1+γ)

√
2 log(2

δ
) +

√
2 log( 2

δ )
k

) ≤ δ.
(8.29)

Remark 9. In the case of uniform measures, we recover the sampling without replacement bounds of
Section 8.1.1 for both sampling with or without replacement:

P

(
|h̃m,kW (u(n),u(n))− EhmW (u(n),u(n))| ≥M

(
2
√

2m
n

log(2/δ) +
√

2 log(2/δ)
k

))
≤ δ,

P

(
|h̃m,kU (u(n),u(n))− EhmU (u(n),u(n))| ≥M

(
2
√

2m
n

log(2/δ) +
√

2 log(2/δ)
k

))
≤ δ.

The proof is based on the U-statistics concentration bound proof [Hoeffding 1963] and can be found
in Appendix A.1.2 with the proof of constant M . The proof idea is to rewrite our minibatch OT losses
as a sum of independent terms and then to apply Hoeffding’s lemma to the rewritten sum. The local
constraints were necessary for a generalization of the concentration bounds to non uniform probability
vectors a(n) and b(n). These concentration bounds are also valid for our debiased minibatch OT loss
as it is composed of three terms of the form h. Furthermore, it is possible to extend this concentration
inequality with an expectation over the batch couples and empirical data.

Corollary 1. With the same hypothesis and notations as in Theorem 8.3.1. The following inequality
holds:

E[|h̃m,kW (a(n),b(n))− EhmW (a(n),b(n))|] 6 20 ·M max
(

2
√

2D2 m
1
2

n2(γ− 3
4 ) ,

√
2
k

)
, (8.30)

E[|h̃m,kU (a(n),b(n))− EhmU (a(n),b(n))|] 6 20 ·M max
(

2
√

2D2m m
1
2

n1/2−2m+2mγ ,

√
2
k

)
. (8.31)

And for our debiased minibatch OT loss:

E[|Λ̃h,m,kW (a(n),b(n))− EΛ̃h,m,kW (a(n),b(n))|] 6 40 ·M max
(

2
√

2D2 m
1
2

n2(γ− 3
4 ) ,

√
2
k

)
, (8.32)

E[|Λ̃h,m,kU (a(n),b(n))− EΛ̃h,m,kU (a(n),b(n))|] 6 40 ·M max
(

2
√

2D2m m
1
2

n1/2−2m+2mγ ,

√
2
k

)
. (8.33)

This deviation bound shows that if we increase the number of data n and batches k while keeping the
minibatch size fixed, we get closer to the expectation. Remarkably for all OT kernel h, the bound does not
depend on the dimension of X , which is an appealing property when data lie in high dimensional space.
A similar property was proven but only for W p

p (see proposition 20, [Weed 2019]). Another nice property
of the bounds above is that for a fixed minibatch size m, if one chooses k proportional to the number of
samples, the convergence of h̃m,kw,P to its mean is in O(n−1/2) for a O(n) computational complexity.

Now let us consider a small experiments. To illustrate the dependence to the dimension, we consider 2
empirical data n-tuple, X and Y ∼ α⊗n, where α is the uniform distribution on the unit cube [0, 1]d,
and compute Λh(u,u) as a function of n. For a first experiment, we fix the batch size m = 128 and we
consider several values of dimension d. For a second experiment, we now fix the dimension d and consider
several batch sizes. Both experiments highlight no dependence of Λh(u,u) to the dimension. To the best
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Figure 8.7: Λ̃h,m,k
W (a,b) as a function of n in log-log space. Here (a,b) are two probability vectors associated to X

and Y ∼ α⊗n, where α is the uniform distribution on the unit cube [0, 1]d. (Left) Λ̃h,m,k
W (a,b) is tested for several

values of d ∈ {2, 7, 10} and a fix m = 128 or (right) Λ̃h,m,k
W (a,b) is tested for several values of m ∈ {64, 128, 256}

and a fix d = 7. The experiments were run 5 times and the shaded bar corresponds to the 20% and 80% percentiles.

of our knowledge, it is the first time that a loss using the exact Wasserstein distance has no dependence
on the dimension, making it a good candidate for learning problems.

We gave concentration bounds in the bounded data case and now we extend these results to the
unbounded data case.

Unbounded data. We supposed in the previous results that the distributions have a bounded support.
We can relax this condition by supposing they have light tails, i.e., they are sub-Gaussian. We consider
the Euclidean norm (‖.‖2) and give a formal definition:

Definition 26 (sub-Gaussian random vectors). A random vector x ∈ Rd is sub-Gaussian, if there exists
σ ∈ R so that:

Ee〈v,x−Ex〉 ≤ e
‖y‖2σ2

2 , ∀y ∈ Rd

The proof uses a related class of sub-Gaussian random vectors and a discussion of the difference is
available in appendix. In the case of sub-Gaussian data, we can not rely on the Hoeffding inequality
anymore as the data are not bounded. However we are able to get a similar concentration inequality.
Hereafter we write A�γ B for A,B > 0 if there exists a large constant τ = τ(γ) > 0 such that A ≤ τB.

Theorem 8.3.2 (Concentration inequality sub-Gaussian data). Let the cost C = Cn,p be defined
as in (8.2). Let (xi)1≤i≤n and (yi)1≤i≤n be two i.i.d. sequences of random vectors such that
x1 ∈ normSG(ρx, σ2

x) and y1 ∈ normSG(ρy, σ2
y) with σx, σy > 0 and ρx, ρy ∈ Rd. Let us introduce

σ := min(σx, σy)
ρ := ‖ρx − ρy‖2

Let the sequence probability vectors (a(n)), (b(n)) verify LocA(m, γ,D) for some γ ∈ ( 3
4 , 1] and D > 0.

We assume that n verifies the following condition:

n ≥ τ(m,σ, ρ,D, p). (8.34)
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Consider m > 1 be a fixed integer and a kernel h ∈ {Wp,W
ε, Sε}. Let the reweighting function wW

and the probability law over m-tuple P W be as in Examples 2 and 4. Then we have the following
concentration bound for the sampling without replacement:

P

(∣∣∣hmW (a(n),b(n))− EhmW (a(n),b(n))
∣∣∣ ≥ (23p+4m) 1

2σpD2 · log(4n) p+1
2

n2(γ− 3
4 )

)
≤ 4n− 1

2p , (8.35)

The proof can be found in Appendix A.1.3. It uses a truncation argument where we split data which lie in
a compact and data which do not. We can remark the following facts about our bounds in the unbounded
case:

• The decay and the constants in (8.35) are artificial consequences of the constants chosen in the
proof.

• The condition (8.34) seems to be necessary. In the bounded case of Theorem 8.3.1 such a condition
was not needed.

• We loose a
√

log(n) factor between (8.35) and the deviation bound between the complete estimator
h and its mean from the compactly supported data case. We report to a longer discussion on this
comparison in Appendix A.1.3.

Bounded cost. We finish this section by discussing the case where we have a bounded cost. In this
case, it is possible to get deviation bounds of the form of Theorem 8.3.1 for any distribution. This case is
not unrealistic because it is easy to to bound a cost. For instance, consider an unbounded ground cost
c(x,y), then you can consider the ground cost c(x,y) = c(x,y)

1+c(x,y) as a new ground cost which is bounded.
Furthermore if c is a distance, then c is also a distance. Thus we have:

Theorem 8.3.3 (Maximal deviation bound for bounded cost). Let δ ∈ (0, 1), k > 1 an integer
and m > 1 be a fixed integer. Consider two distributions α, β possibly unbounded, two n-tuples of
empirical data X ∼ α⊗n,Y ∼ β⊗n and a kernel h ∈ {Wp,W

p
p ,L

ε, Sε,GW} with a bounded ground
cost C. Let the reweighting function w and the probability law over m-tuple P be as in Examples 1,
2, 3, 4. Let the sequences of probability vectors (a(n)) ∈ Σ and (b(n)) ∈ Σ satisfy LocA(m, γ,D) and
let D > 0 and γ ∈ ( 3

4 , 1]. We have a deviation bound for the sampling without replacement between
h̃m,kw,P (a(n),b(n)) and Ehmw,P (a(n),b(n)) depending on the number of empirical data n and the number
of batches k:

P

|h̃m,kW (a(n),b(n))− EhmW (a(n),b(n))| ≥M
(

2 D2m
1
2

n2(γ− 3
4 )

√
2 log(2

δ
) +

√
2 log( 2

δ )
k

) ≤ δ, (8.36)

where M is an upper bound on the ground cost. And for the sampling with replacement, let the
sequences of probability vectors (a(n)), (b(n)) verify LocG(m, γ,D) for some γ ∈ (1− 1

4m , 1] and D > 0,
we have:

P

|h̃m,kU (a(n),b(n))− EhmU (a(n),b(n))| ≥M
(

2 D2mm
1
2

n2m( 1
4m−1+γ)

√
2 log(2

δ
) +

√
2 log( 2

δ )
k

) ≤ δ.
(8.37)
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After studying concentration bounds for the minibatch OT loss in the bounded, unbounded data and
bounded cost cases, we give similar bounds for the minibatch OT plan.

Minibatch Transport plan. As discussed before an interesting output of Minibatch Wasserstein is
the minibatch OT plan Πh,m

w,P , but since it is hard to compute in practice, we instead use Π̃h,m,k
w,P and we

investigate the error on the marginal constraints. In what follows, we denote Π(i) the i-th row of matrix
Π and 1 ∈ Rn the vector whose entries are all equal to 1.

Theorem 8.3.4 (Distance to marginals). Let δ ∈ (0, 1), two integers m ≤ n and consider two
sequences of probability vectors (a(n)), (b(n)) ∈ Σ. Let a ground cost C = Cm,p be as in (8.2) for
some p ≥ 1. Consider an OT kernel h ∈ {Wp,W

p
p ,W

ε, Sε,GW}.. Suppose now that the probability
law over m-tuples P and the reweighting function w, as defined in (8.12) and (8.13), satisfy the
admissibility condition (8.21). For all integers k > 1 and all integers 1 6 i 6 n, we have:

P

(∣∣∣Π̃h,m,k
w,P (a(n),b(n))(i)1− a

(n)
i

∣∣∣ ≥√2 log(2/δ)
k

)
≤ δ (8.38)

The proof uses the convergence of Π̃h,m,k
w,P to Πh,m

w,P and the fact that Πh,m

w,P is a transport plan and
respects the marginals. It is far easier to get this result as we always have bounded transport plan. Let us
now study the convergence of stochastic algorithm when minimizing MBOT.

8.3.2 Unbiased gradients for stochastic optimization

Thanks to the statistical properties of our estimator, we now know that minibatch OT losses concentrate
well around their expectation. We now study their behaviour with modern optimization techniques. We
consider the same data fitting problem as in Section 7.2.2. We recall that we aim at finding the minimum

θ̂ = argmin
θ∈θ

h(αn, βθ, c), (8.39)

where αn is an empirical measure, βθ a parametrized measure, h an OT loss and c a given ground
cost. One way to compute the estimator θ̂ given by (8.39), is to use a stochastic solver for semi-
discrete optimal transport [Peyré 2019, Chapter 5]. This strategy is unfortunately not efficient in
practice [Genevay 2016,Seguy 2018]. A common alternative approach is to use stochastic gradient descent
which were computed between minibatches sampled from α, βθ [Genevay 2018, Salimans 2018]. We
want to prove that the SGD algorithm would converge towards the correct θ̂. Unfortunately, OT is
not differentiable with respect to the ground cost C as shown in Section 7.2.2. We thus rely on Clarke
gradients defined in Section 7.2.2. The full formal statement and proof of those theorems can be found in
Appendix A.1.5.

Theorem 8.3.5. Let a,b ∈ Σm. Let X be a Rdm-valued random variable, and {Yθ} a family of
Rdm-valued random variables defined on the same probability space, indexed by θ ∈ Θ, where Θ ⊂ Rq

is open. Assume that θ 7→ Yθ is C1. Denote C = Cm,p for some p ≥ 1 and let h ∈ {L,Lε}. Then the
function θ 7→ −h(a,b, C(X,Yθ)) is Clarke regular and for all 1 ≤ i ≤ q we have:

∂θih(a,b, C(X,Yθ)) = co{−tr(P ·DT ) · (∇θiY ) :P ∈ Π(h,C(X,Yθ),a,b), (8.40)
D ∈ Rm,m, Dj,k ∈ ∂Y Cj,k(X,Yθ)}
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where ∂θi is the Clare subdifferential with respect to θi, ∂Y Cj,k is the subdifferential of the cell Cj,k
of the cost matrix with respect to Y , co denotes the closed convex hull and Opt(h,C,a,b) is defined
in Definition 18. For h = GW , when the cost matrix is differentiable (that is p > 1), the function
−h(a,b, C(X,X), C(Yθ,Yθ)) is also regular, and an analogous formula holds.

Theorem 8.3.6. Let a,b,X,Y be as in Theorem 8.3.5, and assume in addition that the random
variables X, {Yθ}θ∈Θ have finite p-moments. For h ∈ {L,Lε}, under an additional integrability
assumption, we have:

∂θE [h(a,b, C(X,Yθ))] = E [∂θh(a,b, C(X,Yθ))] . (8.41)

with both expectation being finite. Furthermore the function θ 7→ −E [h(a,b, C(X,Yθ))] is also Clarke
regular. An analogous result holds for h = GW , given that the cost is differentiable (that is p > 1)
and random variables X, {Yθ} have finite 2p-moments.

Remark 10. If the cost matrix in Theorem 8.3.5 is differentiable with respect to Y (that is for p > 1)
and h = W ε, then all the Clarke derivatives in (8.40), (8.41) are sets consisting of one element, which is
the gradient of respective functions. In that case we may deduce for h = Sε a formula for the gradient
from Theorem 8.3.5 and an interchange of expectation and integration from Theorem 8.3.6.

Suppose that in the above theorem the random variable X is distributed according to α⊗m, each random
variable Yθ is distributed according to β⊗m and X is independent of family of variables {Yθ}θ∈Θ. Then
Theorem 8.3.5 implies that it is easy to compute unbiased stochastic gradients of a Minibatch OT loss,
defined as follows:

Definition 27 (Minibatch OT). Let α, β ∈ Pp(Rn) be two measures on an Euclidean space with finite
p-moments, for p ≥ 1. Chose an integer m ∈ N and let h ∈ {L,Lε, Sε}. Given the ground cost the ground
cost Cm,p defined in Eq.(8.2), we define the following quantity:

Emh (a,b, α, β) := E(X,Y )∼α⊗m⊗β⊗m
[
h
m

w,P,Cm,p(X,Y )(a,b)
]

(8.42)

for any a,b ∈ Rn. We define an analogous quantity For h = GW . Assuming that α, β ∈ P2p(Rn), we
denote

Emh (a,b, α, β) := E(X,Y )∼α⊗m⊗β⊗m
[
h
m

w,P,Cm,p(X,X),Cm,p(Y ,Y )(a,b)
]

(8.43)
for any a,b ∈ Rn.

The fact that the above is well defined follows trivially from the assumption that measures α, β have
finite p-moments (or finite 2p-moments for h = GW ) and a standard bound (A.92) used in the proof of
Theorem 8.3.6. In fact, the finiteness of (8.42) and (8.43) is shown in that proof. We finish this section
by noting, that Theorem 8.3.6 implies that if we use the Minibatch OT loss with h ∈ {L,Lε, GW} (or
h = Sε for p > 1) as a contrast function in (7.5), then the objective function is minus Clarke regular. In
this case, it is known that SGD with decreasing step sizes converges almost surely to the set of critical
points of Clarke generalized derivative [Davis 2020], [Majewski 2018].

Accelerating stochastic methods Other solvers than SGD have been discussed to optimize U-
statistics in [Papa 2015]. It is not realistic in our problem to rely on variance reduced algorithms such as
SAG [Schmidt 2017b]. The later needs to store the past gradients, which leads to high memory cost, while
the former needs to compute the full gradients on a regular basis, which leads to a high computation cost.
However as we have a huge number of terms, one might hope to accelerate its convergence by considering
a smaller number of data but it leads to poorer results at convergence.
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8.4 Numerical experiments on generative modelling, color transfer
and minibatch Gromov-Wasserstein

After presenting the formalism of minibatch OT, studied its statistical and optimization properties and
defining a new loss function, we now explore different applications of our methods. To compare the
minibatch OT losses and their debiased counter parts, we set three qualitative experiments and two
quantitative ones. The first experiment is a gradient flow between male and female images and the second
is a Monge map estimation between male and female images. The quantitative experiment consists in
learning a GAN where we investigate the inception score of several minibatch OT losses. Our fourth
experiment is a color transfer experiment, we also investigate the sparsity degree of the resulting minibatch
OT plan. Finally, our two last experiments are dedicated to the minibatch Gromov-Wasserstein loss where
we investigate the inherited properties from the Gromov-Wasserstein distance. As our experiments are
learning scenarios, we have uniform measures and consider the reweighting function wU, regarding the
probability laws on tuples, we investigate both P W and P U. Note that wU and P W check the admissibility
condition from Proposition (12). Finally, experiments were computed on a single GTX Titan GPU.

8.4.1 Gradient flows between human faces with minibatch Optimal Transport

The first experiment we conducted is a gradient flow of a source distribution towards a target distribution.
It corresponds to the nonparametric setting of a data fitting experiments such as GANs. For two given
probability vectors a and b, and support X, Y associated to b, the goal of gradient flows is to model a
support xt associated to a which at each iteration follows the loss gradient xt 7→ h(a,b, C(Xt,Y )). This
experiment has been investigated in [Liutkus 2019,Peyré 2015]. We apply it between male and female
images from the celebA dataset [Liu 2015] where we seek a natural evolution along iterations. CelebA is a
large-scale face attribute dataset with 202,599 face images, 5 landmark locations, and 40 binary attribute
annotations per image. We only considered 5000 male images and 5000 female images. We build the
training dataset by cropping and scaling the aligned images to 64 x 64 pixels.

Following the procedure in [Feydy 2019], the gradient flow algorithm uses an Euler scheme and we
start from an initial distribution at time t = 0. At each iteration we numerically integrate the ordinary
differential equation:

Ẋ(t) = −∇xΛ̃h,m,kw,P,C(X(t),Y )(a,b).

As our losses take probability vectors as inputs, we need to correct an inherent scaling when we calculate
the gradient. The scaling comes from the sample weights ai, which is equal to 1/m in our case. To correct
the scaling, we apply a re-scaling to the gradient equal to m. Finally, for a n-tuple of data X we integrate:

Ẋ(t) = −m∇x
[
h̃m,kw,P,C(X(t),Y )(a,b)− 1

2

(
h̃m,kw,P,C(X(t),X(t))(a,a) + h̃m,kw,P,C(Y ,Y )(b,b)

)]
. (8.44)

We conducted gradient flow experiments for both minibatch OT loss and debiased minibatch OT
loss with the Wasserstein distance as OT kernel and probability laws on m-tuples P W and P U. However,
as our images lie in high dimension, the Euclidean ground cost is not meaningful anymore, that is why
we followed the experiments of [Liutkus 2019] where they considered gradient flows in the latent space
of a pre-trained AutoEncoder. We considered a pre-trained DFC-VAE [Hou 2017] with 64× 64 image
and perform gradient flow in the encoder’s latent space. In addition of the typical [Kingma 2014] loss,
DFC-VAE considers the difference between features of the input image and the reconstructed image
through a pre-trained neural network. In our case, we considered a pre-trained VGG-19 network and the
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Figure 8.8: minibatch OT gradient flow on the CelebA dataset in a DFC-VAE latent space. Source data are 5000
male images while target data are 5000 female images. The batch size m is set to 200 and the number of minibatch
k is set to 10. (r) means that the probability law on m-tuple is P U otherwise it is P W.

layers 1-2-3. We trained the DFC-VAE with a batch size of 64 for 5 epochs over the training dataset and
use Adam method for optimization with initial learning rate of 0.0005, see [Hou 2017] for more details.
With the feature extraction, we are able to improve the quality of final distribution’s images.

The minibatch OT loss produces blurred images at the end of the flow as shown in Figure 8.8, especially
at the back of the image where all details are lost. This is due to the fact that the minibatch OT shrinks
the distribution. On the contrary, the debiased minibatch OT reported in Figure 8.9 produced images
with high background details, quality and coherence with respect to the original background. Moreover,
the evolution seems more natural between the source and the target distributions.

8.4.2 Mapping estimation between human faces with minibatch Optimal Transport

While the previous application focused on updating samples, the second application is a continuous
mapping estimation between source and target distributions that will allow transforming new samples
that are not in the original training data. The map is parametrized by a neural network fϕ : X → Rp

between the source data and the target data. The objective is to minimize the loss:

min
ϕ

Λh,mw,P,C(fϕ(X),Y )(u,u), (8.45)
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Figure 8.9: Unbiased minibatch Wasserstein gradient flow on the CelebA dataset in a DFC-VAE latent space.
Source data are 5000 male images while target data are 5000 female images. The batch size m is set to 200 and
the number of minibatch k is set to 10. (r) means that the probability law on m-tuple is P U otherwise it is P W.

Where fϕ(X) = {fϕ(x1), · · · , fϕ(xn)}. We apply this problem on the celebA dataset [Liu 2015]. We
considered 5000 male and 5000 female images. The image size is 64 × 64. The goal is to learn how to
transform a male image into a female one. Unfortunately, in order to avoid blurry images, we once again
relied on the latent space, of dimension 100, of a pre-trained DFC-VAE [Hou 2017]. We used the same
setting as described in the Gradient Flow section. We performed the training in the latent space and then
we decoded the transformed samples. We consider a 4 dense layer neural network with ReLu activation
function (100→ 1024→ 1024→ 512→ 100). The minibatch size m is set to 128, and we used the Adam
optimizer [Kingma 2015] with a step size of 1e−4 and the coefficients β1 = 0 and β2 = 0.9.

We conducted the experiments for minibatch Wasserstein loss and for the debiased loss Λh. We spotted
once again that the transformed samples with the minibatch Wasserstein losses are blurred (Figure 8.10).
However, the results with the unbiased minibatch Wasserstein loss are more diverse and more realistic. It
shows the effectiveness of the unbiased loss to debiased the minibatch Wasserstein losses (Figure 8.10). It
is interesting to note that the estimated mapping are quite different on some images between losses which
use a sampling with or without replacement.
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source source source source source source
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Figure 8.10: Map learning between 5000 male source images and 5000 female target images. The batch size m
is set to 128 and the number of batch couple k is set to 1. (First row) Source data. (Second and third rows)
Respectively minibatch Wasserstein without replacement and with replacement (r) mapping on the CelebA dataset
in a DFC-VAE latent space. (Fourth and fifth rows) Respectively unbiased minibatch Wasserstein without and
with replacement (r) mapping on the CelebA dataset in a DFC-VAE latent space.

8.4.3 Generative adversarial networks on Cifar-10 with minibatch Optimal Trans-
port

In this experiment, we want to learn a GAN using our new loss function which is a debiased version of
minibatch SD. We recall that the objective of a GAN is to train a neural network Gθ that can generate
realistic data which are close to real data X. For the ground cost of the Wasserstein distance, we could
rely on an Euclidean cost between images. Unfortunately, using an Euclidean cost on high dimensional
images generates blurred versions of the real images [Aggarwal 2001,Liwei Wang 2005,Kulis 2013a]. Hence,
we will learn adversarially a critic network fϕ which extracts meaningful feature vectors for input images.
Then we will apply the Euclidean distance between the encoded generated data fϕ(Gθ(zj)) and encoded
real data fϕ(xi). Other methods relied on a feature extractor such as MMD GAN [Li 2017a] of Sinkhorn
GAN [Genevay 2018]. We can summarize our learning problem as the following:

min
θ

max
ϕ

EΛh,mw,P,Cϕ(X,Gθ(Z))(u,u), (8.46)

where Cϕ(xi,yj)
def.= ‖fϕ(xi)− fϕ(yj)‖2 and fϕ : X → Rp.
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Generator Critic
INPUTS: 100 INPUTS: 3× 32× 32

Conv2Dᵀ nc=256 k=4 stride=1, BN, ReLU Conv2D nc=64 k=4 stride=2, LReLU(slope=0.2)
Conv2Dᵀ nc=128 k=4 stride=2, BN, ReLU Conv2D nc=128 k=4 stride=2, LReLU(slope=0.2)
Conv2Dᵀ nc=64 k=4 stride=2, BN, ReLU Conv2D nc=256 k=4 stride=2, LReLU(slope=0.2)

Conv2Dᵀ nc=3 k=4 stride=2, TanH Conv2D nc=100 k=4 stride=1, LReLU(slope=0.2)

Table 8.1: Generator (left) and critic (right) 4 convolutional layer architectures used in our experiments to generate
CIFAR10 data.

Where Gθ(Z) = {Gθ(z1), · · · , Gθ(zm)} and u ∈ Rm. We train GAN for image generation of CIFAR-10
data [Krizhevsky ]. The number of data is 50K of size 32× 32. Regarding the implementation detail, we
consider the same setting as [Li 2017a,Genevay 2018]. The input noise is of dimension 100. The generator
and the critic have 4 convolution layers (full detail in Table 8.1). We clip the parameters of the critic in
order to have a Lipschitz constant bounded by 1 as done in [Li 2017a,Genevay 2018]. The batch size m we
considered is 64 and we set the number of batch couple to k = 1 for each SGD update. The optimizer we
used is RMSProp [Tieleman 2012a] with a learning rate of 5.10−5. Regarding the entropic regularization
parameter for the Sinkhorn divergence, we set it in {10, 100, 1000}. We update the discriminator 5 times
before one update of the generator. The code can be found here∗.

We compare our method to 4 different methods: WGAN-GP [Gulrajani 2017], Sinkhorn GAN, OT-
GAN [Salimans 2018] and MMD GAN. Regarding Sinkhorn GAN we use a batch size of 256 as done in
their work. We also compared our GAN to the effective WGAN-GP, we considered the same architecture
as above but we used the hyperparameters described in their paper [Gulrajani 2017]. Finally for OT-
GAN [Salimans 2018], we used an entropic regularization parameter set to 500 and for fair comparison
with other methods, we set the batch size to 256. In their paper authors used batch size of 8000 images to
get a more stable training, however this method is not reproducible in our setting with a single GPU.
We report Inception scores in Table 8.2. As we can see, the debiased minibatch Sinkhorn divergence
gives the best Inception score showing the relevance of this new loss function. Comparing to the typical
Sinkhorn GAN, the debiased strategy increases the inception score by 1 point. Furthermore, it seems
that regularizing the problem with the entropic regularization helps to get better performance as already
suggested in previous work [Genevay 2018]. We also report in Figure 8.11 some generated examples from
MBSD, UMBSD and WGAN models and we can see that UMBSD leads to slightly more detailed samples
than MBSD and more realistic than WGAN-GP.

8.4.4 Large scale color transfer between images

The purpose of color transfer is to transform the color of a source image so that it follows the color of
a target image. Optimal transport is a well known method to solve this problem and has been studied
before in [Ferradans 2013,Blondel 2018]. Images are represented by point clouds in the RGB color space.
Then by calculating the transport plan between the two point clouds, we get a transfer color mapping by
using a barycentric projection. As the number of pixels might be huge, previous work selected a subset of
pixels using k-means clusters for each point cloud. This strategy allows to make the problem memory
tractable but looses some information to the quantification. With MB optimal transport, we can compute
a barycentric mapping for all pixels in the image by incrementally updating the full transported vector at

∗https://github.com/kilianFatras/unbiased_minibatch_sinkhorn_GAN

https://github.com/kilianFatras/unbiased_minibatch_sinkhorn_GAN
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Methods Inception score
WGAN-GP 4.59± 0.07

MBSD (ε = 10) 3.57± 0.03
MBSD (ε = 100) 3.61± 0.05
MBSD (ε = 1000) 3.83± 0.05
OT-GAN (ε = 500) 4.13± 0.08

MMD 4.29± 0.06
UMBW (ours) 4.38± 0.08

UMBSD (ε = 10) (ours) 4.72± 0.07
UMBSD (ε = 100) (ours) 4.76± 0.08
UMBSD (ε = 1000) (ours) 4.67± 0.08

Table 8.2: Inception Scores on CIFAR10 for several GAN variants trained with a batch size of 64. Biggest score is
in bold.

SD =100 SD, = 100 WGAN-GP

Figure 8.11: Generated samples with the same latent vectors from different GANs.

each minibtach. When one selects a source indices m-tuple I1 and a target m-tuple I2, she just needs to
update the transported vector between the considered minibatches as QI1Ys =

∑
I2

Πm
I1,I2

QI2Xt, with
matrix QI1 and QI2 defined as in Definition 18. Indeed, the incremental computation can be rewritten as:

Ys = nsΠ̃W 2
2 ,m,k

W (u,u)Xt, (8.47)

when we use the incomplete MBOT plan Π̃W 2
2 ,m,k

W . To the best of our knowledge, it is the first time that
a barycentric mapping algorithm has been scaled up to 1M pixel images. About the required memory for
experiments, the memory cost to store data is O(n). The minibatch OT calculus requires O(m2) because
we need to store the ground cost and the OT plan. The marginal experiment requires O(n), as we just
need to average the marginals of the plan. Finally, the memory cost is O(n) while exact OT would be
O(n2).

The source image has (943000, 3) RGB dimension and the target image has RGB dimension (933314,
3). For this experiments, we compare the results between the minibatch framework with the Wasserstein
distance for several m and k. We used batch of size 10, 100 and 1000. We selected k so as to obtain
a good visual quality and observed that a smaller k was needed when using large minibatches. Also
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Figure 8.12: Color transfer between full images for different batch size and number of batches. (Top) color transfert
from image 1 to image 2. (Bottom) color transfer from image 2 to image 1.

note that performing MB optimal transport can be done in parallel and can be greatly speed-up on
multi-CPU architectures. The code can be found here†. One can see in Figure 8.12 the color transfer (in
both directions) provided with our method. We can see that the diversity of colors falls when the batch
size is too small as the entropic solver would do for a large regularization parameter. However, even for
1M pixels, a batch size of 1000 is enough to keep a good diversity of colors.

From now on for speed constraints, we consider a selected subset of 1000 pixels using k-means clusters
for each point cloud. We reproduced empirically the results of Theorem 8.3.4 about the marginal errors,
as shown in Figure 8.13. We recover the O(k−1/2) convergence rate on the marginal with a constant
depending on the batch size m.

As we stated above, minibatch Wasserstein loss increases the number of connections similarly to
regularized OT variants. Hence, we want to conduct a sparsity experiment of the minibatch Wasserstein
transport plan and we report it for several settings. We considered batch sizes of 50, 100, 200, 350 and
500 and computed the sparsity of the incomplete minibatch OT plan with respect to several number of
minibatches k. The results are gathered in Figure 8.13. We see that as m gets smaller, the degree of
sparsity decreases and that the sparsity reaches a limit as the number of minibatches increases. Intuitively,
it is expected as when m gets smaller, the number of connections increases. The results can be justified
with the following facts. When the minibatch size between the source and target batches is the same
and with uniform weights, then m coefficients of the transport matrix will be non null for the exact
Wasserstein distance. As we draw k batch couples, such as k.m < n and if we suppose that the batches
define a disjoint union of the samples X and Y , then we have at most km coefficients of Π̃W 2

2 ,m,k
W (u,u)

non zero. In the case of non uniform weights a,b, the positive linear program has a solution with at most
2m− 1 non zero coefficients. Then we have at most k.(2m− 1) coefficients of Π̃W 2

2 ,m,k
W (a,b) non zero.

†https://github.com/kilianFatras/minibatch_Wasserstein

https://github.com/kilianFatras/minibatch_Wasserstein
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Figure 8.13: (left) L1 error on both marginals (log-log scale). We selected 1000 points from original images and
computed the error on marginals for several m and k (log-log scale). (Right) Sparsity of incomplete minibatch OT
plan Π̃W 2
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for several k and m.

8.4.5 Minibatch Gromov-Wasserstein rotation and translation invariance

The Gromov-Wasserstein distance has the nice properties to be rotational and translation invari-
ant, so in this section we study if the minibatch Gromov-Wasserstein loss (MBGW) shares the
same properties. As shown in the previous section, our statistical results can be extended to the
Gromov-Wasserstein distance. We start with a spiral experiment where we compute the value of
the MBGW loss for several rotations of the spirals. Then, we aim at checking if the MBGW loss is
able to recover the motion of a galloping horse on a dataset containing a sequence of shapes [Solomon 2016].

Rotational invariance. Our first result shows the stability of rotation and translation invariances
with minibatches. We have the following results:

Proposition 14 (Invariance). The minibatch Gromov-Wasserstein GWm

w1,w2,P 1,P 2,C1,C2 is rotation and
translation invariant.

Proof. Let a and b be two probability vectors with support X and Y respectively. Consider now the
support Y ′ which is a rotation and a translation of Y . Consider three ground costs C1 = C(X,X),
C2 = C(Y ,Y ) and C3 = C(Y ′,Y ′). For fixed minibatches I and J , as Y ′ is a translation and rotations
of Y , we have:

GW
(
w1(a, I), w2(b, J), C1

I,I , C
2
J,J

)
= GW

(
w1(a, I), w2(b, J), C1

I,I , C
3
J,J

)
,

summing over all minibatch couples finishes the proof.

Empirically, distances which are rotation invariant return a constant when comparing rotated
distributions. To support the proposition, we consider a small spiral experiment for different rotations of
the target distribution. We follow the procedure in [Vayer 2019b]. The source and the target distributions
are spirals taken from the scikit-learn spiral dataset [Pedregosa 2011b]. We compute Gromov-Wasserstein
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Figure 8.14: Average value of MBGW and GW losses as a function of rotation angle on 2D spirals. Colored areas
correspond to the 20% and 80% percentiles. Experiments were run 10 times.

distance and the MBGW loss on n = 300 samples. We report in Figure 8.14 the average values of the GW
and MBGW losses for a varying angle and we can see that it is in practice invariant to rotation. From the
Figure 8.14, one recovers that the MBGW loss returns a constant, depending on the minibatch size m,
and hence is rotation invariant.

Meshes comparison In the context of computer graphics, Gromov-Wasserstein distance can be used
to measure similarities between two meshes [Peyré 2016,Solomon 2015,Vayer 2019b]. It can also be used
for shape matching, search, exploration or organization of databases. As minibatch GW loss and its
debiased counter parts are not distances, we want to know if they are meaningful for use in a context of
meshes comparison. From a time series of 45 meshes representing the motion of a galloping horse, we
compute a multidimensional scaling (MDS) of the pairwise distances with minibatch GW losses, that
allows plotting each mesh as a 2D point. Each horse mesh is composed of approximately 9, 000 vertices.
The results can be found in Figure 8.15. As one can observe in Figure 8.15, the cyclical nature of this
motion is successfully recovered in this 2D plot for both MBGW loss and its debiased counter parts.

Running time comparison Our last experiment is the time computation of minibatch Gromov-
Wasserstein. We compare it to Gromov-Wasserstein distance, the entropic regularized Gromov-Wasserstein,
the Sliced Gromov-Wasserstein and its rotational invariant variant [Vayer 2019b]. Unfortunately, the
Sliced variant can only be computed for square Euclidean ground cost unlike the MBGW and is not
rotational invariant. We calculate these distances between two 100-D random measures of n ∈ 102, ..., 104

points. For the minibatch Gromov-Wasserstein we consider two settings. The first setting is with a
fixed number of minibatch couples (k = 5000) and the second is a linear setting where k grows linearly
according to n (k = n

10 ). The latter is due to our concentrations bounds which decreases linearly in the
number of samples if we consider a number of minibatch couples proportional to the number of samples
(see Theorem 8.3.1). We use the Python Optimal Transport (POT) toolbox to compute GW distance
on CPU. For entropic-GW we use the POT implementation with a regularization parameter of ε = 0.01.
We were not able to compute transport plan for a bigger number of data than 104 for both GW and its
entropic variant, with respect to our limited memory and time budget.

We see that MBGW enjoys a constant time computation. The sliced Gromov-Wasserstein and its
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Figure 8.15: MDS on the galloping horse animation with MB Gromov-Wasserstein loss and its debiased variant.
Each sample in this Figure corresponds to a mesh and is colored by the corresponding time iteration. One can see
that the cyclical nature of the motion is recovered.
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rotational variant grow in O(n log(n)) making it slower than the minibatch GW for large scale dataset.
Regarding GW and its entropic counter part, we see that for 10e4 points, the MBGW is 100 time faster
than GW.

8.5 Discussion: non-optimal connections consequences
In this chapter, we introduced a rigorous formalism of minibatch optimal transport. We first designed
an estimator in the simple case of uniform empirical measures. Following this definition, we expressed a
closed-form formula when data lie in 1D and illustrate the consequences on the transport plan. We showed
that minibatch OT creates a bigger of connections between distributions as illustrated in Figure 8.1. From
the formalism for uniform probability vectors, we extended the formalism for general probability vectors
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as well as different sampling. We show the effectiveness of this general formalism to generate misclassified
data for a pre-trained classifier as in ARWGAN from Chapter 6. Then we reviewed the basic metric
properties and we introduced a new loss function which respects the separability axiom. Unfortunately,
this loss is not always positive but always outperformed minibatch OT in practice. We also studied the
deviation bounds of our estimators towards their expectation and their optimization properties. We indeed
showed that we can optimize them using SGD. Finally, we extensively evaluated minibatch OT losses for
generative modelling and color transfer. We also showed that minibatch Gromov-Wasserstein enjoys many
properties of the Gromov-Wasserstein distance.

As illustrated in Figures 8.1 and 8.2, the number of connections increases with minibatch OT. Theses
non optimal connections can connect two samples of different clusters and this is similar to a regularization
effect. Furthermore, the intensity of these connections tend to be uniform as the minibatch size decreases.
In the next chapter, we show that these non optimal connections can lead to undesirable effects for specific
applications and we propose a simple manner to mitigate them.
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In this chapter, we discuss and prove some limits of the minibatch OT framework due to the marginal
constraints and the minibatch sampling which create non-optimal connections. We then give empirical and
theoretical evidences that using unbalanced optimal transport at the minibatch level can help mitigating
the aforementioned non optimal connections. We show that the deviation bounds and the optimization
properties, proved in the last chapter, remain true for unbalanced minibatch OT despite the fact that the
UOT transport plans are possibly unbounded. Finally, we extensively evaluate our method on gradient
flow, domain adaptation and partial domain adaptation experiments and show that our method improves
the results from a state-of-the-art algorithm based on minibatch OT. These contributions have been
published to the The Thirty-eighth International Conference on Machine Learning [Fatras 2021b].

9.1 Robustness to outliers and sampling
In this section, we discuss the limits and sensitivities of minibatch OT. We then justify that using a
relaxed marginal OT variant can help mitigating these weaknesses. Finally, we theoretically show that
unbalanced optimal transport is robust to outliers contrary to exact optimal transport.

Limits of minibatch OT. First, we discuss the limitations of combining balanced OT with the
minibatch framework. OT is sensitive to the geometry of distributions. When those distributions are
tainted by outliers, OT is forced to transport them due to the marginal constraints, inducing an undesirable
extra transportation cost. Minibatch OT averages several OT terms related to subsamples of the original
distributions, thus sharing this sensitivity. The problem is even worse as two minibatches do not necessarily
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share samples that would lie in the support of the full OT plan, hence forced to match samples that could
be, at the level of a minibatch, considered as outliers. Take as an example two distributions with clustered
samples. While in the full OT plan clusters can be matched exactly, those clusters are likely to appear as
imbalanced in the minibatches, especially if the size of the minibatch is small and does not respect the
statistics of the original distribution. Due to the marginal constraints, samples from one cluster are likely
to be matched to unrelated clusters, as depicted in Figure 8.2. This explains why in practice previous
works relied on large minibatches to mitigate this sampling effect [Damodaran 2018]. To overcome this
issue, we propose the natural solution of relaxing the marginal constraints at the minibatch level. The
expected outcome is twofold: i) mitigating the effect of subsampling in the minibatch strategy and ii)
providing a natural and scalable robust optimal transport computation strategy at the global level. In the
following paragraph, we present some robust OT formulations.

Relaxed marginals: Unbalanced and Robust Optimal Transport variants. Unbalanced opti-
mal transport is empirically known to be more robust to outliers than OT as it does not need to meet
the marginals [Chizat 2017, Liero 2017]. Indeed, if an outlier is too expensive to move, UOT would
not transport it. Several other formulations make optimal transport robust for practical and statistical
reasons. Partial OT can be adapted for partial matchings problem with applications for positive-unlabeled
learning [Chapel 2020]. A line of work proposes ’distributionnally robust’ models, where models are
trained in a Wasserstein ball around the empirical distribution in the space of probabilities [Mohajerin Es-
fahani 2018,Kuhn 2019]. In a similar approach, several variants relax the OT marginal constraints with
a ball constraint, and consider several penalties such as integral probability metrics [Nath 2020], total
variation or Csiszàr divergences for outlier detection [Mukherjee 2020,Balaji 2020]. Such relaxations allow
to derive statistical guarantees w.r.t. noise and outliers. Another idea to ensure robustness consists in
learning the cost adversarially, and is formulated as a max-min problem where the cost is modeled by an
Euclidean embedding [Genevay 2018], a compact space of matrices [Dhouib 2020a] or a projection on a
lower dimensional subspace [Paty 2019].

We chose to rely on unbalanced optimal transport with an entropic regularization at the minibatch
level to design a new loss function that we called Unbalanced Minibatch Optimal Transport. The entropic-
regularized unbalanced formulation of optimal transport can be easily computed with a Sinkhorn algorithm
as discussed in Section 2.4.2. We discuss in the following some theoretical considerations to support
Unbalanced OT’s robustness.

Theoretical analysis: impact of an outlier. We start by examining the impact of an outlier in the
behaviors of OT and UOT. The following lemma illustrates the relations between those two quantities.

Lemma 9.1.1. Take (α, β) two probability distributions. For ζ ∈ [0, 1], write α̃ = ζα + (1 − ζ)δz a
distribution perturbed by a Dirac outlier located at some z outside of the support of (α, β). Take the
unregularized OT loss OTτ,0KL with KL entropy and cost C. Write m(z) =

´
C(z,y)dβ(y). One has:

OTτ,0KL (α̃, β, C) ≤ ζ OTτ,0KL (α, β, C) + 2τ(1− ζ)(1− e−m(z)/2τ ) (9.1)

Now take the unregularized, balanced OT loss L with cost C. Write (f, g) the optimal dual potentials (i.e.
functions) of L(α, β), and y∗ in β’s support. Then:

L(α̃, β, C) ≥ ζL(α, β, C) + (1− ζ)
(
C(z, y∗)− g(y∗) +

ˆ
gdβ

)
(9.2)
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Figure 9.1: Several OT costs between 2D distributions with n = 10 samples and m = 5. Target distribution is
equal to the source distribution tainted with a moving outlier (green dot). The shaded area represent the variance
of subsample MBOT on 5 run.

Equation (9.2) shows that when z gets further from the supports of (α, β), the OT loss increases.
However for UOT the upper bound (9.1) tends to saturate as z gets further away. What remains is
the UOT loss between distributions whose outliers are removed, with a cost of removing the outlier
proportional to its mass.

We illustrate Lemma 9.1.1 with a toy example in Figure 9.1. We consider a probability distribution α
tainted with an outlier (green dot) to get a target probability distribution α′ = 1

n+1 (n.α+ δz). We then
move away the outlier from α’s support, as shown with the green arrow, and we calculate several OT
costs. The minibatch size is set to m = 5 and the total cost is the average of k OT costs between those
minibatches. We see that OT variants are not robust to the outlier as their loss increases along the outlier
displacement unlike UOT variants which reach a plateau as predicted by Lemma 9.1.1. Each computation
is done 5 times to show that variance is lower for bigger k and that UMBOT has a lower variance than
MBOT for k = 30 and k = 500.

We consider now an example in 2D, akin to Figure 8.2, where our goal is to illustrate the OT plan
between two empirical distributions of 10 samples in Figure 9.2. We use two 2D empirical distributions
where the samples belong to a certain cluster depending on a related class (color information). The source
data are equally distributed between classes while the target data have different proportions, 3 samples
belong to the red class while 7 samples belong to the green class. Different proportions between domains
are ubiquitous for real-world data. We compare unbalanced minibatch OT, minibatch OT, entropic
OT and UOT. For UOT, the divergence Dφ equals to KL divergence and for the minibatch variant, the
minibatch size is m = 2. We can see from the OT plans in the first row of the figure that the cluster
structure is more or less recovered. However OT and minibatch OT tend to connect samples from different
classes. This configuration would lead, for instance, to negative transfer in a context of domain adaptation
applications, i.e., matching of samples between different domains. This is less true for UOT, where the
pairings between different classes is diminished and tend to disappear when we reduce the penalty τ . In
the next section, we show that under reasonable hypotheses, the main theoretical results from Chapter 8
remain true.
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Figure 9.2: Several OT plans, normalized by their maximum value, between 2D distributions with n = 10 samples.
The first row shows the minibatch OT plans Πh,m for different values of m and different OT kernels, the second
row provides an equivalent geometric interpretation of the OT plans, where the mass transportation is depicted as
connections between samples.

9.2 Statistical and optimization properties
For sake of simplicity and due to the experimental setting where we have empirical measures, we consider
the uniform formalism of minibatch OT developed in Section 8.1.1. In this section, we show that the
deviation bounds on the transport plan and the Unbalanced minibatch OT loss remain true, despite the
fact that the mass of the transport plans are possibly unbounded. We demonstrate that under reasonable
hypotheses, the UOT cost can be bounded and the associated set of optimal transport plans is compact.
Then we demonstrate that under the same hypotheses, we can exchange Clarke gradients and expectations
to justify SGD’s convergence.

9.2.1 Deviation bounds

To generalize the concentration bounds from Section 8.3.1, we first need to assure that our estimators
are bounded. From now on, we suppose that the measures α and β are compactly supported. Our first
lemma intends to show that the UOT cost is finite and that the optimal transport plan is bounded.

Lemma 9.2.1 (Bounded UOT and optimal transport plan). Let C be a ground cost and a,b two positive
vectors in Rn+ such that ma = ‖a‖1 > 0 and mb = ‖b‖1 > 0. Assume that 〈ab>, C〉 < +∞. Consider
h = OTτ,εφ and assume ε > 0 or φ′∞ > 0. Then h(a,b, C) is finite and the set of optimal transport plan is
a compact set.

It is straightforward to prove boundedness of h = Sτ,εφ from Lemma 9.2.1. We can now turn to establish
deviation bounds for both incomplete estimators h̃m,k and Π̃h,m,k.

Theorem 9.2.1 (Maximal deviation bound). Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be fixed.
Consider two n-tuples X ∼ α⊗n and Y ∼ β⊗n and a kernel h ∈ {OTτ,εφ , Sτ,εφ }. We have a maximal
deviation bound between h̃m,k(X,Y ) and Emh depending on the number of samples n and the number
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of batches k. With probability at least 1− δ on the draw of X,Y and Dk we have:

|h̃m,k(X,Y )− Emh | ≤M

√ log( 2
δ )

2b nmc
+

√
2 log( 2

δ )
k

 ,

where M is the UOT upper bound. Furthermore, for h = OTτ,εφ , let M∞Π be the maximum mass of
minibatch transport plans. For all k > 1, all 1 6 i 6 n, with probability at least 1− δ on the draw of
X,Y and Dk we have:

|Π̃h,m,k(X,Y )(i)1n −Πh,m(X,Y )(i)1n| 6 M∞Π

√
2 log(2/δ)

k
,

where we denote by Π(i) the i-th row of matrix Π and by 1n ∈ Rn the vector whose entries are all
equal to 1.

The rate m
n is the same as in Chapter 8.3.1. The main difference is the upper bound M which

bounds UOT. Note that the bound does not depend on the dimension of X unlike original unbalanced
OT [Séjourné 2019]. Regarding OT plans, the constant MΠ represents the maximum mass of minibatch
transport plans which would be 1 for OT. In the next section, we study the convergence of SGD using
Clarke gradients when the contrast function is unbalanced minibatch OT.

9.2.2 Unbiased Clarke gradients

In Section 8.3.2, we proved that minibatch OT does not suffer from biased gradients contrary to optimal
transport. In this section we show that this property can be generalized for minibatch UOT, including
unregularized UOT. Like in Section 8.3.2, we also achieve this point by relying on Clarke regularity. It is
not immediate because UOT is not differentiable as we do not have a unique optimal transport plan when
ε = 0. We have the following theorem.

Theorem 9.2.2. Let X̂, {Ŷθ}θ∈Θ be two m-tuples of random vectors compactly supported, h ∈
{OTτ,ε, Sτ,ε} and Cm a C1 cost. Under an additional integrability assumption, we have:

∂θE[h(u,u, Cm(X̂, Ŷθ))] = E[∂θh(u,u, Cm(X̂, Ŷθ))],

with both expectation being finite. Furthermore the function θ 7→ −E[h(u,u, Cm(X̂, Ŷθ))] is also
Clarke regular.

To prove this theorem, we used a similar proof which was used for proving the minibatch OT case. We
also needed to prove that UOT is Lipschitz in the ground cost C, which is possible because the transport
plan is bounded by Lemma 9.2.1. Theorem 9.2.2 implies that if we use the Minibatch UOT loss with
h ∈ {OTτ,εφ , Sτ,εφ } as a loss function, then the minus objective function is Clarke regular. Furthermore,
Stochastic gradient with decreasing step sizes converges almost surely to the set of critical points of Clarke
generalized derivative [Davis 2020,Majewski 2018]. As a consequence, it is justified to use SGD with
minibatch UOT.

Lazy gradients. We finish this section with a phenomenon that we call lazy gradients. We show that
for small values of τ , the norm of the partial gradient with respect to the parameters is small as well, which
leads to slow training phase in practice. We first express the partial derivative of unbalanced minibatch
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OT. For h = OTτ,εφ and for all 1 ≤ i ≤ q we have:

∂θih(u,u, C(X,Yθ)) = co{−〈Π ·D〉 · (∇θiY ) :Π ∈ Opth(X,Y ), (9.3)
D ∈ Rm,m, Dj,k = ∇Y Cj,k(X,Yθ)}.

Where ∂θi is the Clarke subdifferential with respect to θi, ∇Y Cj,k is the differential of the cell Cj,k of the
cost matrix with respect to Y , Opth(X,Yθ) is the set of optimal transport plan and co denotes the closed
convex hull. Note that when ε > 0 the set Opth(X,Yθ) is reduced to a singleton, the notation co is then
superfluous and it reduces to

∂θih(u,u, C(X,Yθ)) = −〈Π? ·D〉 · (∇θiY ), (9.4)

where Π? is the optimal plan. As we are in finite dimension, all norms are equivalent and we can consider
‖ · ‖ to be a submultiplicative norm. We can then bound the partial gradient as:

‖∂θih(u,u, C(X,Yθ))‖ = ‖ − 〈Π? ·D〉 · (∇θiY )‖ ≤ ‖Π?‖‖D‖‖∇θiY ‖. (9.5)

So for small values of τ , the mass of the optimal transport plan ‖Π?‖ is small. Hence the gradient norm is
small as well which leads to slow down the training phase. Thus a trade-off is needed on the value of
τ in order to have transport plan with big enough mass and which do not transport outliers. Further
analysis can be made by using the closed-form solution of entropic-regularized UOT between Gaussian
distributions [Janati 2020] and we left such analysis as future work.

9.3 Numerical experiments on gradient flows and domain adaptation

In this section, we illustrate the practical behavior of unbalanced minibatch OT for gradient flow and for
domain adaptation experiments. We relied on the POT package [Flamary 2021] to compute the exact OT
solver or the entropic UOT loss and the Geomloss package [Feydy 2019] for the Unbalanced Sinkhorn
divergence. The experiments were designed in PyTorch [Paszke 2017] and all the code can be found here∗.

9.3.1 Unbalanced MiniBatch OT gradient flow: a qualitative example

We consider the same experiments as in Section 8.4.1 but with toy 2D data. Consider a given target
distribution α, we recall that the purpose of gradient flows is to model a distribution β(t) which at each
iteration follows the gradient direction minimizing the loss βt 7→ h(α, βt) [Peyré 2015,Liutkus 2019].

For α and β(0) we generate 10000 2D points divided in 2 imbalanced clusters with number of samples
in each cluster provided in Figure 9.3. We consider the (unbalanced) sinkhorn divergence, a squared
Euclidean cost, a learning rate of 0.02, 5000 iterations, m equals 64 or 128 and k = 1. We show the
gradient flow of the upper clusters to the lower clusters in Figure 9.3. From the experiment, we can see
that the minibatch OT is not robust to imbalanced classes on the contrary to the minibatch UOT. Indeed
there are data from the upper left cluster which converge to the down right cluster and we can also see an
overlap between the classes. Due to OT marginal constraints, the loss forces to transport all data in the
batch which results in breaking the target shapes. This is not the case for minibatch UOT, which better
respects the shape of target distributions.

∗https://github.com/kilianFatras/JUMBOT
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Figure 9.3: (Best viewed in colors) Minibatch UOT gradient flow on a 2D dataset. Source data and target data
are divided in 2 imbalanced clusters, source left (red) and target right (green) shapes have 6400 samples while
source right (purple) and target left (orange) shapes have 3600 samples. The batch size m is set to {64, 128} and
the number of minibatch k is set to 1, meaning that the explicit Euler integration step is conducted for each batch.
Results are computed with the (unbalanced) minibatch Sinkhorn divergence losses.

9.3.2 JUMBOT: a new approach for domain adaptation

In this section, we evaluate Unbalanced minibatch OT in domain adaptation. Based on the state-of-the-
art algorithm deepjdot, we replace OT by UOT at the minibatch level. We consider vanilla domain
adaptation and partial domain adaptation experiments.

Domain adaptation.

JUMBOT. To solve the domain adaptation problem, we use an alignment strategy with a cross entropy
on the source domain and a transfer term. The transfer term of our method is based on [Damodaran 2018]
and aims at finding a joint distribution map between the source and the target distributions by taking
into account a term on a neural network embedding space and on the label space. Formally, let gθ be an
embedding function where the input is mapped into the latent space and fλ which maps the latent space
to the label space on the target domain. The embedding space is in our experiment the penultimate layer
of a neural network. For a given minibatch, embedding gθ and classification map fλ, the transfer term is:

h̄mCθ,λ((Xs,Y s), (Xt, fλ(gθ(Xt)))),with (9.6)

(Cθ,λ)i,j = η1‖gθ(xsi )− gθ(xtj)‖22 + η2L(ysi , fλ(gθ(xtj))),

where L(., .) is the cross-entropy loss and η1, η2 are positive constants. Basically, this specific transportation
cost combines a distance between the representation of the data through the neural network gθ and a
loss function between the associated labels [Courty 2017b]. Taking k = 1 led to state-of-the-art results.
The Csiszàr divergence φ is the Kullback-Leibler divergence KL. We also add a cross entropy term on the
source data. Hence our optimization problem is:

min
θ,λ

∑
i

L(fλ(gθ(xsi )),ysi ) + η3h̃
m,k
Cθ,λ

((Xs,Y s), (Xt, fλ(gθ(Xt)))). (9.7)

Our method is called jumbot and stands for Joint Unbalanced MiniBatch OT. It is related to deepjdot
[Courty 2017b,Damodaran 2018] at the notable exceptions that we use minibatch UOT, which can also
handle partial domain adaptation as suggested by our experiments.

Datasets. We start with digits datasets. Following the evaluation protocol of [Damodaran 2018] we
experiment on three adaptation scenarios: USPS to MNIST (U 7→M), MNIST to M-MNIST (M 7→MM),
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Methods/DA U 7→ M M 7→ MM S 7→ M Avg
dann(*) 92.2 ± 0.3 96.1 ± 0.6 88.7 ± 1.2 92.3

cdan-e(*) 99.2 ± 0.1 95.0 ± 3.4 90.9 ± 4.8 95.0
alda(*) 97.0 ± 1.4 96.4 ± 0.3 96.1 ± 0.1 96.5

deepjdot(*) 96.4 ± 0.3 91.8 ± 0.2 95.4 ± 0.1 94.5
e-deepjdot(*) 97.1 ± 0.3 94.2 ± 0.1 97.6 ± 0.1 96.3

jumbot 98.2 ± 0.1 97.0 ± 0.3 98.9 ± 0.1 98.0

Table 9.1: Summary table of DA results on digit datasets. Experiments were run three times. (*) denotes the
reproduced methods.

and SVHN to MNIST (S 7→M). MNIST [LeCun 2010] contains 60,000 images of handwritten digits,
M-MNIST contains the 60,000 MNIST images with color patches [Ganin 2016] and USPS [Hull 1994]
contains 7,291 digit images. Street View House Numbers (SVHN) [Netzer 2011] consists of 73, 257 images
with digits and numbers in natural scenes. We report the evaluation results on the test target datasets.
Office-Home [Venkateswara 2017] is a difficult dataset for unsupervised domain adaptation (UDA), it
has 15,500 images from four different domains: Artistic images (A), Clip Art (C), Product images (P) and
Real-World (R). For each domain, the dataset contains images of 65 object categories that are common in
office and home scenarios. We evaluate all methods in 12 adaptation scenarios. VisDA-2017 [Peng 2017]
is a large-scale dataset for UDA from simulation to real. VisDA contains 152,397 synthetic images as the
source domain and 55,388 real-world images as the target domain. 12 object categories are shared by
these two domains. Following [Long 2018,Chen 2020], we evaluate all methods on VisDA validation set.

Setup. First note that for all datasets, jumbot uses a stratified sampling on source minibatches as
done in deepjdot [Damodaran 2018]. Stratified sampling means that each class has the same number of
samples in the minibatches. This is a realistic setting as labels are available in the source dataset.

For Digits datasets, we used the 9 CNN layers architecture and the 1 dense layer classification proposed
in [Damodaran 2018]. We trained our neural network on the source domain during 10 epochs before
applying jumbot. We used Adam optimier with a learning rate of 2e−4 with a minibatch size of 500.
Regarding competitors, we use the official implementations with the considered architecture and training
procedure.

For Office-Home and VisDA, we employed ResNet-50 as generator. ResNet-50 is pretrained on
ImageNet and our discriminator consists of two fully connected layers with dropout, which is the same as
previous works [Ganin 2016,Long 2018,Chen 2020]. As we train the classifier from scratch, we set its
learning rates to be 10 times that of the generator. We train the model with Stochastic Gradient Descent
optimizer with a momentum of 0.9. We schedule the learning rate with the strategy in [Ganin 2016], it
is adjusted by χp = χ0

(1+µq)ν , where q is the training progress linearly changing from 0 to 1, χ0 = 0.01,
µ = 10, ν = 0.75.

We compare jumbot against recent domain adaptation papers, namely dann [Ganin 2016], cdan-
e [Long 2018], alda [Chen 2020], deepjdot [Damodaran 2018] and rot [Balaji 2020] on all considered
datasets. We reproduced their scores and contrary to these papers we do not report the best classification
on the test along the iterations but at the end of training, which explains why there might be a difference
between reported results and reproduced results. We sincerely believe that the evaluation shall only be
done at the end of training as labels are not available in the target domain. But we also report the
maximum accuracy along epochs for the Office-Home DA task in Table 9.3 and it shows that our method
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da

Method A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P avg
resnet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
dann (*) 44.3 59.8 69.8 48.0 58.3 63.0 49.7 42.7 70.6 64.0 51.7 78.3 58.3
cdan-e(*) 52.5 71.4 76.1 59.7 69.9 71.5 58.7 50.3 77.5 70.5 57.9 83.5 66.6

deepjdot (*) 50.7 68.6 74.4 59.9 65.8 68.1 55.2 46.3 73.8 66.0 54.9 78.3 63.5
e-deepjdot (*) 50.6 68.9 74.4 59.3 65.1 69.0 56.2 46.5 74.5 65.1 54.7 78.1 63.5

alda (*) 52.2 69.3 76.4 58.7 68.2 71.1 57.4 49.6 76.8 70.6 57.3 82.5 65.8
rot (*) 47.2 71.8 76.4 58.6 68.1 70.2 56.5 45.0 75.8 69.4 52.1 80.6 64.3
jumbot 55.2 75.5 80.8 65.5 74.4 74.9 65.2 52.7 79.2 73.0 59.9 83.4 70.0

pda

resnet-50 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.4
deepjdot(*) 48.2 66.2 76.6 56.1 57.8 64.5 58.3 42.7 73.5 65.7 48.2 73.7 60.9

e-deepjdot(*) 47.6 67.0 77.3 57.1 57.9 65.4 58.1 41.3 74.4 66.4 47.7 75.1 61.3
pada 51.9 67.0 78.7 52.2 53.8 59.0 52.6 43.2 78.8 73.7 56.6 77.1 62.1
etn 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.4

ba3us(*) 56.7 76.0 84.8 73.9 67.8 83.7 72.7 56.5 84.9 77.8 64.5 83.8 73.6
jumbot 62.7 77.5 84.4 76.0 73.3 80.5 74.7 60.8 85.1 80.2 66.5 83.9 75.5

Table 9.2: Summary table of DA and Partial DA results on Office-Home (ResNet-50). (*) denotes the reproduced
methods.

Method A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P avg
resnet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
dann(*) 46.2 65.2 73.0 54.0 61.0 65.2 52.0 43.6 72.0 64.7 52.3 79.2 60.7

cdan-e(*) 52.8 71.4 76.1 59.7 70.6 71.5 59.8 50.8 77.7 71.4 58.1 83.5 67.0
alda(*) 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
rot(*) 47.2 70.8 77.6 61.3 69.9 72.0 55.4 41.4 77.6 69.9 50.4 81.5 64.6

deepjdot(*) 53.4 71.7 77.2 62.8 70.2 71.4 60.2 50.2 77.1 67.7 56.5 80.7 66.6
jumbot 55.3 75.5 80.8 65.5 74.4 74.9 65.4 52.7 79.3 74.2 59.9 83.4 70.1

Table 9.3: Vanilla domain adaptation experiments on Office-Home dataset with maximum classification along
training iterations. (ResNet50)

is above all of the competitors by a safe margin of 3%.
For Office-Home, we made 10000 iterations with a batch size of 65 and for VisDA, we made 10000

iterations with a batch size of 72. For fair comparison we used our minibatch size and number of iterations to
evaluate competitors. The hyperparameters used in our experiments are as follows η1 = 0.1, η2 = 0.1, η3 =
1, τ = 1, ε = 0.1 for the digits and for Office-Home datasets η1 = 0.01, η2 = 0.5, η3 = 1, τ = 0.5, ε = 0.01.
For VisDA, η1 = 0.005, η2 = 1, η3 = 1, ε = 0.01 and τ was set to 0.3.

Results. The results on digit datasets can be found in Table 9.1 where (*) denotes reproduced results.
We conducted each experiment three times and report their average results and variance. For fair
comparisons, we only resize and normalize the image without data augmentation. We see that our method
performs best with a margin of at least 1.5 points. Furthermore, we see an important 4% increase of
the performance compared to deepjdot. A deeper analysis of this difference is considered in the next
paragraph. Office-Home results are gathered in Table 9.2 and VisDA are reported in Table 9.4. For
fair comparison with previous work, we used a similar data pre-processing and we used the ten-crop
technique [Long 2018,Chen 2020] for testing our methods. Experiments in [Balaji 2020] follow a different
setup explaining the difference of performance between their reported score and our reproduced score.
jumbot achieves the best accuracy on average and on 11 of the 12 scenarios on the Office-Home dataset
and achieves the best accuracy on VisDA at the end of training with a margin of 4% and 2% respectively.

Ablation. The main difference between jumbot and deepjdot is the use of a different OT solver.
jumbot uses entropic regularized unbalanced OT and deepjdot uses original OT. We have conducted an
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Figure 9.4: T-SNE embeddings of 10000 test samples for MNIST (source) and MNIST-M(target) for deepjdot
and our method. It shows the ability of the methods to discriminate classes (samples are colored w.r.t. their
classes).

Methods Accuracy (in %)
cdan-e(*) 70.1
alda(*) 70.5

deepjdot(*) 68.0
e-deepjdot(*) 69.2
robust ot(*) 66.3

jumbot 72.5

Table 9.4: Summary table of DA results on VisDA datasets. (*) denotes the reproduced methods.

ablation study in all our domain adaptation experiments to measure the effect of the entropic regularization
and the unbalanced formulation. The use of entropic regularized OT in place of original OT in deepjdot
is denoted e-deepjdot. We can see that for the digits experiments, the entropic regularization helps
to get better performances of 0.6% on the DA task USPS 7→ MNIST and more than 2% on SVHN 7→
MNIST. For the last digit task MNIST 7→ M-MNIST, the grid search on ε needed to be reduced due to
some numerical instabilities. Overall, the performances of e-deepjdot are still lower than the entropic
regularized Unbalanced OT of jumbot by more than 1%. A similar performance gain was observed on
the VisDA dataset, where e-deepjdot was 1.2% higher than deepjdot but still more than 3% below
jumbot. On the Office-Home experiments, the entropic regularization alone did not get better results.

Analysis. In this paragraph, we study the difference of behavior between deepjdot and jumbot.
Along jumbot’s training on the DA task USPS to MNIST, we measured the percentage of mass between
data with different labels at each iteration. In average along training about 7% of deepjdot connections
are between data with different labels while this percentage decreases to 0.7% for jumbot as shown in
Figure 9.6. So deepjdot transfers wrong labels to target data which will decrease the overall accuracy.

We also plot a TSNE embedding of our method and deepjdot (see Figure 9.4), we can see that
there are some overlaps between clusters for deepjdot unlike our method. This is probably due to the
minibatch smoothing effect which would tend to bring clusters of different classes closer.

We also provide a sensitivity analysis to the batch size, ε and τ parameters. All results are gathered in
Figure 9.5. When τ is too small, jumbot creates negative transfer because of the entropic regularization.
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Figure 9.5: (Best viewed in colors) deepjdot and jumbot sensitivity analysis. We report the classification accuracy
of deepjdot and jumbot on the DA tasks USPS 7→ MNIST and SVHN 7→ MNIST for several hyperparameter
variations. We consider the marginal coeffifient τ , the entropic coefficient ε and the batch size m.

When τ increases, we see that jumbot accuracy increases and it reaches its maximum around τ = 1.
However when τ is too high, we recover entropic OT.

When ε varies for jumbot and the entropic variant of deepjdot, we see that entropy helps getting
slightly better results. However when the entropic regularization coefficient is too big, the accuracy falls.
We conjecture that entropic regularized OT regularizes the neural network because the target prediction is
matched to a smoothed source label (see a similar discussion in [Damodaran 2019]). And it is well known
that label smoothing creates class clusters in the penultimate layer of the neural network [Müller 2019].

We now discuss the minibatch size. While jumbot has a constant accuracy along all batch size, the
deepjdot accuracy falls of 4% for SVHN 7→ MNIST and 6% for USPS 7→ MNIST. The benefits of our
method over deepjdot are twofold, it is more robust to small batch sizes and it is performant for small
computation budget unlike deepjdot.

Finally, we provide a classification accuracy along training which demonstrates the network overfitting
with deepjdot and not with jumbot, the results are gathered in Figure 9.7. One can see that deepjdot
starts overfitting from epoch 30 on each class. There are some classes which are more affected by overfitting
than others. The accuracy on each class is reduced of several points. This behaviour is not shared with
our method jumbot. Indeed it is more stable, it does not show any sign of overfitting and it has a higher
accuracy. This shows the relevance of using our method jumbot.

Partial domain adaptation.

Partial DA. Finally we consider the Partial DA (PDA) application. In PDA, the target labels are a
subset of the source labels, i.e., Yt ⊂ Ys. Samples belonging to these missing classes become outliers
which can produce negative transfer. We want to investigate the robustness of our method in such an
extreme scenario. We evaluate our method on partial Office-Home, where we follow [Cao 2018] to select
the first 25 categories (in alphabetic order) in each domain as a partial target domain.

Set up. We compare our method against state-of-the-art PDA methods: pada [Cao 2018], etn
[Cao 2019] and ba3us [Jian 2020]. For fair comparison we followed the experimental setting of pada,
etn and ba3us. We considered a neural network architecture and a training procedure similar as in the
domain adapation experiments which also corresponds to the setting in [Jian 2020]. Our hyperparameters
are set as follows : τ = 0.06, η1 = 0.003, η2 = 0.75 and finally η3 was set to 10. Regarding training
procedure, we made 5000 iterations with a batch size of 65 and for optimization procedure, we used the
same as in [Jian 2020]. We do not use the ten crop technique to evaluate our model on the test set as we
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Figure 9.6: Percentage of mass between data with different labels for jdot and jumbot during the USPS to
MNIST DA task.

0 20 40 60 80 100
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Class accuracies JUMBOT

class 0
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8
class 9

0 20 40 60 80 100
Epochs

0.75

0.80

0.85

0.90

0.95

Class accuracies DeepJDOT

Figure 9.7: (Best viewed in colors) deepjdot and jumbot class accuracies along training. We report the
class accuracies along training of deepjdot and jumbot on the DA task MNIST 7→ M-MNIST for optimal
hyper-parameters. Each color represents a different class.

were not able to reproduce the results from ent and pada. Furthermore, we do not know if the reported
results ent and pada were evulated at the end of optimization or during training, but our reported scores
are above their scores by at least 5% on average.

Results. The final performances are gathered in the lower part of Table 9.2. We can see that jumbot
is state-of-the-art on 9 out of the 12 domain adaptation tasks and is on average 2% above competitors.
Finally, we also evaluate deepjdot [Damodaran 2018] and its entropic variant e-deepjdot on the PDA
task to compare the performances of regularized unbalanced OT against regularized and unregularized
OT. e-deepjdot gives similar results to deepjdot and they both produce negative transfer. jumbot is
on average 15% higher on this problem, showing the clear advantages of our strategy in the presence of
unbalanced classes.
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9.4 Conclusion
In this chapter, we presented some weaknesses of minibatch optimal transport. Due to the marginal
constraints, minibatch OT, like OT, is sensitive to outliers. Furthermore, two minibatches do not
necessarily share samples that would lie in the support of the full OT plan. Hence it would force OT to
match samples that could be, at the level of a minibatch, considered as outliers. To mitigate these issues,
we proposed to use unbalanced OT at the minibatch level. We proved that contrary to OT, UOT is robust
to these outliers. Then we also proved that the deviation bounds and optimization properties showed in
the previous chapter remain true for unbalanced minibatch OT. Finally we demonstrated the relevance of
our method on gradient flows, domain adaptation and partial domain adaptation experiments. We show
that by using unbalanced minibatch OT in deepjdot, nonetheless it outperforms the original deepjdot
based on minibatch OT but also outperforms all recent state-of-the-art domain adaptation algorithms.
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10.1 Overview of the contributions
In this thesis, we developed new optimal transport based methods for deep learning and we theoretically
and empirically studied a commonly used optimal transport approximation in deep learning.

Optimal Transport for label noise. We first focused on the label noise problem, which is a supervised
learning setting where a proportion of labels are corrupted. Based on the intuition that label noise can be
mitigated if the predicted classification is uniform among clusters of data, we used an optimal transport
loss in the Virtual Adversarial Algorithm. The VAT algorithm promotes a local uniform prediction by
penalizing large local changes in the prediction thanks to a divergence. We replaced the divergence with
optimal transport and crafted different ground costs in order to change the geometry of the regularization.
These ground costs allowed us to have complex boundaries between similar classes and smooth boundaries
between non similar classes. One ground cost uses semantic distances based on word embeddings such as
word2vec, as similarly done in [Frogner 2015] and another uses the distance between embedded data. We
then showed the relevance of using our method on standard and real-world datasets including remote
sensing images. We also showed the effectivness of our methods on open-set noise, where images that do
not correspond to given classes are in the dataset.

Generating natural misclassified data. Our second contribution uses generative adversarial networks
to generate misclassified data. Based on a pre-trained classifier, where we have access to the output,
and to training data, we developed a new weighting strategy to define a new probability measure for
training data. The weighting strategy is based on a softmax function and gives bigger weights to
misclassified data than correctly classified data. We then give this probability measure to Wasserstein
GAN [Arjovsky 2017, Gulrajani 2017], an optimal transport variant of GAN, in order to generate
misclassified data. We evaluated empirically our method on different remote sensing data, where we
showed that the generated data were similar to training data and misclassified by the pre-trained classifier.



152 Chapter 10. Conclusion

We also demonstrated that a large proportion of misclassified data for the pre-trained classifier are also
misclassified for other classifiers, showing the transfer property of our method. Finally, we also showed
our method can modify training data to make them misclassified and that we can fool state-of-the-art
detector.

Theoretical and empirical study of minibatch Optimal Transport. After using optimal transport
as a loss function in deep learning, we studied a standard optimal transport approximation. To fasten
training of deep learning, loss functions are commonly computed between minibatches of training data.
While it is a competitive method in practice [Genevay 2018,Damodaran 2018], a theoretical explanation
and study were lacking. We thus developed a rigorous formalism that works for general probability
measures. After defining new empirical estimators, we found a closed-form solution for 1D data. We also
reviewed the metric properties, and in order to fix the separability axiom loss, we introduced a new loss
function based on minibatch OT. Then we reviewed deviation bounds between our estimators and their
expectations, which is the quantity we aim to minimize. We also proved the convergence of SGD in a
data fitting scenario when the contrast loss is MBOT. We showed that minibatch OT can solve large-scale
color transfer and kept a high diversity of color. Finally, we empirically showed the practical success of
our new loss function over minibatch OT on generating data.

Mitigating non-optimal connections. Our last contribution studied the practical consequences of
the non-optimal connections in a classification scenario. The standard strategy to solve the domain
adaptation problem is to align the embeddings of source and target data which share the same class.
Unfortunately, minibatch OT creates non-optimal connections between the domains due to the minibatch
sampling and the OT marginal constraints. Thus, the non-optimal connections align domains of data which
have different classes. In order to alleviate these connections, we proposed to rely on unbalanced optimal
transport. We showed that this variant is indeed robust to outliers unlike original optimal transport.
We also showed that our theoretical contributions to minibatch OT remained true when unbalanced
optimal transport was used at the minibatch level. Finally, we empirically demonstrated the success of
our method on domain adaptation experiments including in extreme imbalanced scenario. We also showed
that the performance of unbalanced minibatch optimal transport remains constant when the minibatch
size decreases contrary to exact optimal transport.

10.2 Perspectives of future works

10.2.1 Perspectives on our contributions

The different contributions developed in this manuscript lead to several open questions.

Perspectives on the Wasserstein Adversarial Regularization. An important question to improve
WAR is to study new ground costs. The two ground costs introduced for our regularizations have been
empirically crafted and thus might be crude approximations. New ground costs could be for instance
derived from auxiliary tasks that do not involve labels, or by inspecting the confusion matrix score,
obtained on the noisy validation set, along the learning process. A dynamic update of the class matrix
is also a relevant research avenue to be studied in the case the noise statistics of the data change over
time. Recently, several works were published were authors tried to learn the ground cost for a given
machine learning problem [Cuturi 2014,Heitz 2020]. We believe that this strategy can also be relevant
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for WAR. Finally, we recall that WAR is based on the VAT algorithm, which was designed to solve
the semi-supervised learning setting. While preliminary results showed that WAR do not outperform
VAT on this task, it might be due to non-insightful ground cost. We also foresee an application for
imbalanced classes where the ground cost could allow to have complex boundaries for imbalanced classes
and smooth boundaries for others. Finally, WAR can also be relevant on other tasks were perturbation
based regularization were successful.

Perspectives on minibatch OT. The recent work on minibatch OT suggests new open questions. On
the theoretical side, new concentration bounds could be derived for minibatch OT using the Talagrand
concentration inequality [Talagrand 1995]. A recent work [Nguyen 2021] introduced a new minibatch OT
cost based on a different sampling. Instead of averaging the optimal transport cost between minibatches,
they see the minibatches as their new measures to transport. They create a ground cost which measures
the pairwise distance of minibatches. They proved that their loss is a metric between probability measures
and that their transport plan is empirically more sparse. However, it is not proven that they indeed
transport all the input masses. While appealing, this strategy remains heavy in practice as you need
to compute a lot of minibatch distances as a pre-processing step in order to get your ground cost. The
empirical gain in deep learning is also not clear and needs to be demonstrated.

Perspectives on Unbalanced Optimal Transport. The use of unbalanced optimal transport at the
minibatch level to improve classification score in domain adaptation, highlighted some limits of UOT. In
practice, when the marginal coefficient τ is too small, the mass of the optimal transport plan is small as
well. This leads to gradients with possibly small norms which slow down the learning process. Studying
empirically and theoretically this effect is an important element for the use of UOT in deep learning. This
subject could be investigated with closed-form solutions of unbalanced OT, as done for the Gaussian case
in [Janati 2020]. In order to get a transport plan with a bigger mass, we could also learn adversarially the
probability measures of our minibatches, similarly to [Balaji 2020]. Intuitively, we might want to give
small weights to transport data with a high cost and bigger weights to data which are cheap to transport.

10.2.2 Perspectives on Optimal Transport in Machine Learning

Several new Machine Learning applications were recently published and we make a small overview of
domains where optimal transport has been or can be applied.

Normalizing Flow. Among them, we note that optimal transport has been applied to normalizing
flow. A normalizing flow is an invertible map between an arbitrary probability distribution and a
standard normal distribution. The flow can be used for density estimation, statistical inference or
generative modelling. Several variants of normalizing flow rely on the dynamical formulation of optimal
transport [Onken 2021,Finlay 2020], on the sliced Wasserstein distance formulation [Dai 2021] or the
Brenier theorem [Huang 2021], where the optimal transport map is the gradient of a convex function for
the squared euclidean distance [Peyré 2019]. Among all these variants, a minibatch computation of the
primal might bring interesting elements such a more stable training as for GANs [Genevay 2018].

Out-of-distribution sample. Deep neural networks have a tendency to make spurious correlations
that do not hold outside a specific training distribution. For instance, [Beery 2018] trained a neural
network to classify camels from cows. Most of the training pictures of cows had green pastures, while
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most pictures of camels had a desert landscape. Unfortunately, the neural network associated a green
pasture to the cows and incorrectly classified cows on a beach. The main method to solve this problem
is the Invariant Risk Minimization [Arjovsky 2020]. It aims at building a classifier that performs well
across many unseen environments. As optimal transport has been successful in Domain Adaptation to
create cluster of data between domains [Damodaran 2018,Fatras 2021b]. It would be interesting to see if
a similar approach could lead to create cluster of training data and improvements on classifying OOD
samples.
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In this appendix, we gather the different proofs of the results we claimed in the previous chapter. In
Appendix A.1 we gather the proofs of the different results from Chapter 8. In Appendix A.2 we gather
the proofs of results from Chapter 9.

A.1 Proofs of Chapter 8

Outline. This Appendix is organized as follows:

• Appendix A.1.1 gives the proofs of our general minibatch OT distances formalism. In particular, it
proves under what conditions the minibatch OT matrix is a minibatch OT plan.

• Appendix A.1.2 provides the proofs of concentration bounds for compactly supported distributions.
We generalize the U-statistic proof to know under what conditions our estimator is close to its mean.

• Appendix A.1.3 provides the proofs of concentration bounds for sub-Gaussian distributions. Based on
the compactly supported case, we use a truncation argument to provide a more general concentration
bound for unbounded distributions.

• Appendix A.1.4 gives the proofs of concentration bounds for the minibatch OT plan. We provide a
concentration bound of our incomplete minibatch OT plan around the input marginals.
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• Appendix A.1.5 details the optimization proofs. We prove that we can exchange Clarke gradients
over parameters and expectations, which justifies the convergence of SGD when we use MBOT as a
contrast function. Notably, this proof includes the Wasserstein distance and the Gromov-Wasserstein
distance.

• Appendix A.1.6 discusses the 1D case. We detail the calculus of the 1D minibatch Wasserstein
distance closed-form.

A.1.1 Formalism

In this appendix, we show results which justify our formalism and then, we show how we can upper bound
our minibatch OT loss. We first show that Example 4 defines a probability law on m-tuples without
replacement.

Example 4 (Drawing indices “without replacement”). Given a discrete probability distribution a ∈ Σn,
it is also possible to draw distinct indices i` ∈ JnK, 1 ≤ ` ≤ m, by defining P W

a (I) = 0 if the m-tuple I has
repeated indices, otherwise

P W
a (I) = 1

m

(n−m)!
(n− 1)!

∑
i∈I

ai. (A.1)

Denote by Pm the set of all m-tuples without repeated elements. Let us check, that equation (A.1) defines
a probability distribution on Pm. Observe that

∑n
i=1 ai = 1 and that for each 1 ≤ i ≤ n

]{I ∈ Pm : i ∈ I} = ]{I ∈ Pm : n ∈ I}
= ]{I = (i1, . . . , im) ∈ Pm : i1 = n}+ . . .+ ]{I = (i1, . . . , im) ∈ Pm : im = n}

= m · ]{I = (i1, . . . , im) ∈ Pm : im = n}. (A.2)

Since ]{I = (i1, . . . , im) ∈ Pm : im = n} is the number of (m − 1)-tuples without repeated indices of
J1, n− 1K, (n− 1)!/(n−m)!, it follows that

m(n− 1)!
(n−m)! ·

∑
I∈Pm

P W
a (I) =

∑
I∈Pm

∑
i∈I

ai =
n∑
i=1

ai · ]{I ∈ Pm : i ∈ I} = m · (n− 1)!
(n−m)! . (A.3)

This shows that
∑
I∈Pm P

W
a (I) = 1.

We now prove that if Equation (8.21) is respected, then the minibatch OT matrix defines a transport
plan. We also prove that for a W p

p kernel, minibatch W p
p , i.e., W

p
p , is an upper bound of W p

p .

Proposition 12. If the reweighting function w and the parametric distribution on m-tuples Pc satisfy
the following admissibility condition

EI∼PcQ
>
I w(c, I) = c, ∀c ∈ Σn (A.4)

Then with the notations of Definition 19, the averaged minibatch transport matrix Πh

w,P is an admissible
transport plan between the discrete probabilities a,b ∈ Σn in the sense that Πh

w,P1n = a and 1>nΠh

w,P = b>.
Considering the Wasserstein kernel h = W p

p , the minibatch loss defined in Definition (21), as the associated
coupling Πh

w,P is not the optimal coupling of the full OT problem, it satisfies

h
m

w,P (a,b) = 〈Πh

w,P , C〉F ≥ h(a,b). (A.5)
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Under assumption (A.4) one can safely call Πh

w,P (a,b) an averaged minibatch transport plan.

Proof. By the definition of Πm
h and the properties QJ1n = 1m and Πm

I,J1m = aI = w(a, I) we have

Πh

w,P1n = EI,JQ>I Πm
I,JQJ1n = EI,JQ>I Πm

I,J1m = EI,JQ>I aI = EIQ>I aI = EI∼PaQ
>
I w(a, I) = a.

The proof that 1>nΠh

w,P = b> is similar. This establishes that Πh

w,P ∈ U(a,b) is an admissible transport
plan between the discrete probabilities a and b.

We now prove (A.5) for the Wasserstein distance h = W p
p (ε = 0, 1 ≤ p < ∞). Since Πh

w,P is an
admissible transport plan we have:

h(a,b) = min
Π∈U(a,b)

〈Π, C〉 ≤ 〈Πh

w,P , C〉.

Further, by definition of the average minibatch transport plan Πh

w,P , and observing that the matrices
QI , QJ from Definition 23 are such that CI,J = QICQ

>
J , we obtain

〈Πh

w,P , C〉 = 〈EI,JΠI,J , C〉 = EI,J〈ΠI,J , C〉 = EI,J〈Q>I Πm
I,JQJ , C〉 = EI,J〈Πm

I,J , CI,J〉.

Now observe that by definition of the minibatch transport plans Πm
I,J (cf Definition 23) we have,

〈Πm
I,J , CI,J〉 = h

(
w1(a, I), w2(b, J), C(I,J)

)
.

For the Wasserstein distance h = W p
p , combining all of the above we obtain

h(a,b) ≤ 〈Πh

w,P , C〉 = EI,J〈Πm
I,J , CI,J〉 = EI,Jh

(
w1(a, I), w2(b, J), C(I,J)

)
.

We prove some associations of reweighting functions and parametric laws on m-tuple which respects
the marginal constraints (A.4).

Lemma 8.1.1 (Admissibility). The uniform reweighting function wU and the parametric law "with
replacement" P U satisfy the admissibility condition. The admissibility condition also holds for the parametric
law without replacement P W with the normalized reweighting function wW.
In contrast for wU, P W when a is not uniform, the resulting OT matrix is not a transportation plan.

Proof. Consider first wW and draws with the probability law P W. This law only allows to draw m-tuples
without repeated entries. Since the probability of drawing a tuple without repeated indices such that∑

j∈I aj = 0 is zero, without loss of generality we consider a draw I such that
∑
j∈I aj > 0 as ai > 0 with

1 ≤ i ≤ n. Given 1 ≤ i ≤ n, we distinguish several cases: if i /∈ I then Q>I wW(a, I) = 0; otherwise there
exists 1 ≤ k ≤ m such that i = ik, hence

(Q>I wW(a, I))i = wW
k(a, I) = aik∑m

p=1 aip
= ai∑

j∈I aj
.

As a result
EI∼P W

a
(Q>I wW(a, I))i = EI∼P W

a

ai∑
j∈I aj

1I(i) = aiEI∼P W
a

1I(i)∑
j∈I aj

.
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If ai = 0 the right hand side equals ai. Assuming now ai > 0, we have
∑
j∈I aj > 0 for each I that

contains i, and we prove that EI∼P W
a

1I(i)∑
j∈I

aj
= 1. Indeed, by definition of P W we have

EI∼P W
a

1I(i)∑
j∈I aj

=
∑
I∈Pm

P W
a (I) 1I(i)∑

j∈I aj
=

∑
I∈Pm,I3i

P W
a (I) 1∑

j∈I aj
=

∑
I∈Pm,I3i

(n−m)!
m(n− 1)!

= (n−m)!
m(n− 1)! · ]{I ∈ P

m, i ∈ I} = 1.

Where the last equality is from (A.2). We can conclude that EI∼P W
a
Q>I w

W(a, I) = a for every a.
To show that admissibility does not hold with wU and P W, we similarly obtain

EI∼P W
a
(Q>I wU(a, I))i = EI∼P W

a
1
m1I(i) = 1

mEI∼P W
a
1I(i).

When a is not uniform, by the pigeonhole principle there is an index i such that ai > 1/m. Since the
right hand side above cannot exceed 1/m, we conclude that EI∼P W

a
(Q>I wU(a, I)) 6= a.

Consider now the pair (wU, P U). For an m-tuple I = (i1, . . . , im) we denote mj = mj(I) the multiplicity
of index 1 ≤ j ≤ n and observe that m1 + · · · + mn = m, and Πj∈Iaj = Πn

k=1a
mk
k . Vice-versa, given

integers (m1, . . . ,mn) such that m1 + · · · + mn = m there are m!/(m1! · · ·mn!) m-tuples I with the
corresponding multiplicity. Given 1 ≤ i ≤ n, reasoning as above we obtain

EI∼P U
a
(Q>I wU(a, I))i = EI∼P U

a

mi

m
1I(i) =

∑
I∈JnKm

P U
a (I)mi

m
1I(i) =

∑
I∈JnKm

(Πj∈Iaj)
mi

m
1I(i)

=
∑

m1+···+mn=m

m!
m1! · · ·mn! (Π

n
k=1a

mk
k )mi

m
1(mi ≥ 1)

=
∑

m1+···+mn=m
mi≥1

m!
m1! · · ·mi! · · ·mn!

mi

m
Πn
k=1a

mk
k

= ai
∑

m′1+···+m′n=m−1

(m− 1)!
m′1! · · ·m′i! · · ·m′n!Π

n
k=1a

m′k
k = ai

(
n∑
i=1

ai

)m−1

= ai.

In the last line, we used Newton’s multinomial theorem and the fact that
∑n
i=1 ai = 1.

Upper bound. We now give a upper bound of minibatch optimal transport. We have access to empirical
data and the distance between each data can be bounded by the maximum distance between data, i.e.,
for two random data x and y, we have : ‖x− y‖p2 6 2 max16i,j6n ‖xi − yj‖p2.

Lemma A.1.1 (Upper bounds on OT kernels). Let X = (x1, · · · ,xn), Y = (y1, · · · ,yn) be two n-tuple
of vectors in Rd and C the ground cost matrix. Let a and b be two probability vectors, w1 and w2 be two
reweighting functions and let (I, J) be two m tuples. Then, we have the following bounds for kernel OT
h ∈ {L,Wp,W

p
p ,L

ε, Sε}:

h
(
w1(a, I), w2(b, J), C(I,J)(X,Y )

)
6 2 max

16i,j6n
‖xi − yj‖p2. (A.6)

And for h = GW , let C1 = C(X,X) and C2 = C(Y ,Y ). Then,

h
(
w1(a, I), w2(b, J), C1

(I,I), C
2
(J,J)

)
6 max

16i,j,k,l6n
‖C1

i,k − C2
j,l‖

p
2. (A.7)
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Proof. We start with the case h = Wε for ε ≥ 0. Note that with our choice of cost matrix C = (Ci,j)1≤i,j≤n

one has 0 6 Ci,j 6 2 max16i,j6n ‖xi − yj‖p2. Denote the optimal transport plan between I and J as
Π? = (Πi,j) (with respect to the cost matrix CI,J), consider the transport plan w1(a, I)⊗ w2(b, J), we
directly have:

|〈Π?, CI,J〉 − εH(Π?|w1(a, I)⊗ w2(b, J))|,
≤ 〈w1(a, I)⊗ w2(b, J), CI,J〉+ ε(H(w1(a, I)⊗ w2(b, J)|w1(a, I)⊗ w2(b, J)),
≤ 2 max

16i,j6n
‖xi − yj‖p2. (A.8)

As the second term is equal to zero in first inequality’s right hand side expression. The extension to
h = Sε is direct as it is a weighted sum of three terms of the form Wε. Lastly, a similar argument gives
the desired bound for the Gromov-Wasserstein distance. Let C1 = C(X,X) and C2 = C(Y ,Y ), for 2
m-tuples I, J , one can write:

|
∑
i,j,k,l

‖(C1
I,I)i,k − (C2

J,J)j,l‖p2πi,jπk,l| ≤ max
16i,j,k,l6n

‖(C1
I,I)i,k − (C2

J,J)j,l‖p2. (A.9)

Finally, in the case of data lying in a compact, the quantity 2 max16i,j6n ‖xi − yj‖p2 is upper bounded
by a constantM = 2(diam(supp(α))∪diam(supp(β)))p and max16i,j,k,l6n ‖C1

i,k−C2
j,l‖

p
2 is upper bounded

by M = (diam(supp(α)) ∪ diam(supp(β)))p2 .

In the next section, we use the upper bound on optimal transport to show a deviation bound between
the empirical estimators of MBOT and their mean value in the case of compactly supported measures.

A.1.2 Concentration theorem (compactly supported measures)

In this section, we consider two compactly supported probability distributions α, β. In what follows, we
are interested in concentration bounds with m ∈ N∗ fixed. For n ∈ N∗ and n ≥ m, we denote by u the
element of Σn such that ui = 1

n (1 ≤ i ≤ n). We will also often omit the dependence of various quantities
(the minibatch procedure h, the reweighting function w etc.) in the asymptotic parameter n. The purpose
of this appendix is to prove Theorem 8.3.1. The appendix is structured as follows. In a first section, we
prove the deviation between the complete estimator h and its mean. Afterwards, we provide the deviation
between the complete estimator h and its incomplete counter part h̃ in a second section. The third section
gathers all previous propositions and lemmas to prove Theorem 8.3.1 and corollaries.

Deviation between the complete estimator h and its mean.

We focus on the first ingredient of our proof: the deviation between the complete estimator h and its
mean. This proof is based on the U-statistics concentration inequality proof but needs to be adapted due
to the non-uniform probability vectors a and b.

From now on, the probability vectors (a(n)) and (b(n)) are sequences which depend on the number
of data n. More precisely (a(n))n∈N and (b(n))n∈N are sequences of vectors of size n such that for each
n ∈ N, a(n),b(n) ∈ Σn, we denote the space of these sequences as (a(n)), (b(n)) ∈ Σ. The sequence of
probability vectors (a(n)) and (b(n)) can not be taken arbitrarily if we want to guarantee convergence.
Hence we rely on local constraints that we defined in Chapter 8. We recall them:
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Definition 25 (Local averages conditions). Let (a(n)) ∈ Σ and two integers n,m ∈ N∗ such as n ≥ m.
(i) We say that (a(n)) satisfies the local arithmetic mean condition if there exists a constant D > 0 and
γ > 0 such that for any n ∈ N and I ∈ JnKm we have

1
m

∑
i∈I

a(n)
i ≤ D

nγ
. (A.10)

We write that (a(n)) satisfies LocA(m, γ,D)) (or LocA(m, γ)) when the constant D is implicit).
(ii) Analogously, (a(n)) is said to verify the local geometric mean condition if there exists a constant D > 0
and γ > 0 such that for any n ∈ N∗ and I ∈ JnKm we have(

Πi∈Ia(n)
i

) 1
m ≤ D

nγ
. (A.11)

We write that (a(n)) verifies LocG(m, γ,D)) (or LocG(m, γ)) when the constant D is implicit).

We record the following properties of the LocA and LocG conditions.

Lemma 8.3.1. Let m ∈ N∗, γ > 0 and D > 0. Let (a(n)) ∈ Σ be a sequence of probability vectors. The
following statements hold:
(i) If (a(n)) verifies LocA(m, γ,D) or LocG(m, γ,D) then γ ≤ 1.
(ii) If (a(n)) is LocA(m, γ,D) then (a(n)) is LocG(m, γ,D).

Proof. We first prove (i). Let (a(n)) ∈ Σ which verifies LocA(m, γ,D) for some m ∈ N, D > 0 and γ > 1.
Fix 1 ≤ ` ≤ n an integer. By choosing I = (`, · · · , `) ∈ JnKm, we have by (A.10)

a
(n)
` ≤ D

nγ
. (A.12)

Hence, we find by summing (A.12) for 1 ≤ ` ≤ n

1 ≤ Dn1−γ ,

which contradicts (a(n)) ∈ Σ. The proof is similar if (a(n)) verifies LocG(m, γ,D). Lastly, (ii) follows from
the arithmetic-geometric mean inequality.

We show that in order to obtain concentration properties of the estimators hmw,P (a(n),b(n)) we need to
ensure that the sequences (a(n)) and (b(n)) verify the local condition with enough decay, e.g. (a(n)), (b(n))
are LocA(m, γ) or LocG(m, γ) for a γ sufficiently close to 1.

Hereafter, we denote by τ an absolute (and possibly large) constant. We also writes τ = τ(γ) to denote
constants which depend on some parameter γ.

Proposition 15 (Generalized U-statistics concentration bound). Let δ ∈ (0, 1) and m ≥ 1 be a fixed
integer. Consider two compactly supported distributions α, β, two n-tuples of empirical data X ∼ α⊗n,Y ∼
β⊗n and a kernel h ∈ {Wp,Wε, Sε,GW p} with a ground cost C as in 8.2. Let the reweighting function
w and the probability law P over m-tuple be as in Examples 1, 2, 3, 4. Let (a(n)), (b(n)) ∈ Σ satisfy
LocA(m, γ,D) for some γ ∈ ( 3

4 , 1] and D > 0. We have the following concentration bound for the sampling
without replacement

P

(∣∣hmW (a(n),b(n))− EhmW (a(n),b(n))
∣∣ ≥ 2MD2 m

1
2

n2(γ− 3
4 )

√
2 log(2/δ)

)
≤ δ, (A.13)
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where M = τ(diam(supp(α)) ∪ diam(supp(β))). And for the sampling with replacement, let the sequence
probability vectors (a(n)), (b(n)) verify LocG(m, γ,D) for some γ ∈ (1− 1

4m , 1] and D > 0. We have the
following concentration bound

P

(∣∣hmU (a(n),b(n))− EhmU (a(n),b(n))
∣∣ ≥ 2M D2mm

1
2

n2m(γ−1+ 1
4m )

√
2 log(2/δ)

)
≤ δ, (A.14)

where M = τ(diam(supp(α)) ∪ diam(supp(β))).

Proof. The proof is inspired by the two-sample U-statistic proof from [Hoeffding 1963, section 5]. We
start with the sampling without replacement case.

Sampling without replacement : We first consider the case of Example 4, i.e, when the law P is
given by (8.18). The proof is based on two-sample U-statistic Hoeffding inequalities and we give it for
h ∈ {Wp,Wε, Sε} as the GW p follows the same principle. The goal is to rewrite hmW as a sum of terms
where each term is a sum of independent random variables. Let (a(n)) and (b(n)) be as in the above. To
ease the notations, the dependence in n will be implicit.

We fix r = bn/mc. Let 0 ≤ k ≤ r − 1, we define the set Ik := {km+ 1, · · · , km+m}. Then we define
the function V as :

V (x1, · · · ,xn,y1, · · · ,yn) = 1
r

r−1∑
k=0

P W
a (Ik)P W

b(Ik)h
(
wW(a, Ik), wW(b, Ik), C(Ik,Ik)

)
(A.15)

We recall the implicit dependence in X and Y in the right-hand-side of (A.15) through the ground cost
C. In the summation below, σx or σy denotes a generic permutation of {1, · · · , n}. We compute :

1
n!2

∑
σx,σy

V (xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)) (A.16)

= (n−m)!2
n!2

∑
I∈Pm

∑
J∈Pm

P W
a (I)P W

a (J)h
(
wW(a, I), wW(b, J), C(I,J)

)
(A.17)

= (n−m)!2
n!2 h

m

W (a,b) (A.18)

Finally, we have :

h
m

W (a,b) = 1
n!2

∑
σx,σy

V ′(xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)), (A.19)

where the function V ′ is defined by

V ′ =
(

n!
(n−m)!

)2
V

Let us define

T (x1, · · · ,xn,y1, · · · ,yn) = V ′(x1, · · · ,xn,y1, · · · ,yn)− E
[
V ′(x1, · · · ,xn,y1, · · · ,yn)

]
,

We have
h
m

W (a,b)− E
[
h
m

W (a,b)
]

= 1
n!2

∑
σx,σy

T (xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)) (A.20)
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Note that T may be rewritten as a sum as in (A.15) with h
(
wW(a, Ik), wW(b, Ik), C(Ik,Ik)

)
replaced by

h
(
wW(a, Ik), wW(b, Ik), C(Ik,Ik)

)
− E

[
h
(
wW(a, Ik), wW(b, Ik), C(Ik,Ik)

)]
for each k.

More precisely, we write T (xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)) = 1
r

∑r−1
k=0 T

σx,σy
k for σx, σy two

permutations of JnK. Here, Tσx,σyk are independent and centered random variables such that

∣∣Tσx,σyk

∣∣ ≤ 2M
{ 1
m

(n−m)!
(n− 1)!

}2
(

n!
(n−m)!

)2 (k+1)m∑
i=km+1

aσx(i)

(k+1)m∑
i=km+1

bσy(i)

≤ 2MD2n2(1−γ) (A.21)

thanks to the LocA(m, γ,D)-condition and to the constant M = τ(diam(supp(α)) ∪ diam(supp(β))). In
what follows we write Tσ = T

(
(xσx(i))i, (yσy(i))i

)
for simplicity. From (A.20), we get

P
(
h
m

W (a,b)− E
[
h
m

W (a,b)
]
≥ t
)
≤ e−λtE

[
eλ(hmW (a,b)−E[hmW (a,b)])

]
= e−λtE

[
eλ

1
n!2

∑
σ
Tσ
]
≤ e−λt 1

(n!)2

∑
σ

E
[
eλTσ

]
≤ e−λt max

σ
E
[
eλTσ

]
,

where in the first and second inequalities, we used Markov’s and Jensen’s inequalities respectively.
Furthermore, for any T = Tσ we have from Lemma 7.3.1 along with (A.21),

E
[
eλT
]

=
r−1∏
k=0

E
[
e
λ
r Tk
]
≤

r−1∏
k=0

E
[
e

2λ2
r2

M2D4n4(1−γ)]
= exp

(
2λ2M2D4mn3−4γ

)
(A.22)

Hence,
P
(
h
m

W (a,b)− E
[
h
m

W (a,b)
]
≥ t
)
≤ exp

(
− λt+ 2λ2M2D4m · n3−4γ

)
Optimizing the latter over λ ∈ R+ and following a similar reasoning for −

(
h
m

W (a,b)− E
[
h
m

W (a,b)
])

gives
(A.13).

The GW p proof follows the same reasoning but differs in the definition of V which would be equal to:

V (x1, · · · ,xn,y1, · · · ,yn) = 1
r

r−1∑
k=0

P W
a (Ik)P W

b(Ik)GW
(
wW(a, Ik), wW(b, Ik), C1

(Ik,Ik), C
2
(Ik,Ik)

)
,

with ground costs C1 = Cn,p(X,X) and C2 = Cn,p(Y ,Y ).
Sampling with replacement Let us now consider the sampling with replacement P U with the

reweighting function wU. We follow the same procedure as in section 5.C from [Hoeffding 1963]. For the
sake of simplicity, we abbreviate wU(a, I) as u ∈ Σm and give the proof for h ∈ {Wp,Wε, Sε} as the GW
case can be deduced from it. In this case, it is possible to rewrite hmU as a sum over m-tuples without
replacement, i.e.,

h
m

U (a,b) =
∑

I1∈JnKm,I2∈JnKm
P U

a (I1)P U
b(I2)h

(
u,u, C(I1,I2)

)
(A.23)

=
(
nm

(n−m)!
n!

)2 ∑
I1∈Pm,I2∈Pm

h?(I1, I2). (A.24)

Where h? is a weighted arithmetic mean of certain values of h. Let us take an example with m = 2,



A.1. Proofs of Chapter 8 163

we consider (i1, i2) ∈ P2 and (j1, j2) ∈ P2 we have:

h? ((i1, i2), (j1, j2)) =
(n− 1

n

)2
P U

a ((i1, i2))P U
b((j1, j2))h(u,u, C(i1,i2),(j1,j2))

+ n− 1
n2 P U

a ((i1, i1))P U
b((j1, j2))h(u,u, C(i1,i1),(j1,j2))

+ n− 1
n2 P U

a ((i1, i2))P U
b((j1, j1))h(u,u, C(i1,i2),(j1,j1))

+ 1
n2P

U
a ((i1, i1))P U

b((j1, j1))h(u,u, C(i1,i1),(j1,j1))

More examples for V-statistics can be found in (section 5.C, [Hoeffding 1963]). Following the above
example, we see that we have the bounds : 0 ≤ h? ≤ maxI1 maxI2 P U

a (I1)P U
b(I2)M . From now, the proof

is like the sampling without replacement proof and we only give the main differences.
We fix r = bn/mc. Let 0 ≤ k ≤ r − 1, we define the set Ik := {km+ 1, · · · , km+m}. Then we define

the function V as :

V (x1, · · · ,xn,y1, · · · ,yn) = 1
r

r−1∑
k=0

h?
(
Ik, Ik

)
(A.25)

We recall the implicit dependence in X and Y in the right-hand-side of (A.25) through the ground costs
C. In the summation below, σx or σy denotes a generic permutation of {1, · · · , n}. We compute :

(n
m

n! )2
∑
σx,σy

V (xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)) (A.26)

= (nm)2 (n−m)!2
n!2

∑
I1∈Pm

∑
I2∈Pm

h?
(
I1, I2

)
(A.27)

= h
m

U (a,b) (A.28)

Finally, we have :

h
m

U (a,b) = 1
n!2

∑
σx,σy

V ′(xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)), (A.29)

where the function V ′ is defined by V ′ = (nm)2V . Let us define

T (x1, · · · ,xn,y1, · · · ,yn) = V ′(x1, · · · ,xn,y1, · · · ,yn)− E
[
V ′(x1, · · · ,xn,y1, · · · ,yn)

]
,

We have
h
m

U (a,b)− E
[
h
m

U (a,b)
]

= 1
n!2

∑
σx,σy

T (xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)) (A.30)

Note that T may be rewritten as a sum as in (A.25) with h
(
u,u, C(Ik,Ik)

)
replaced by h

(
u,u, C(Ik,Ik)

)
−

E
[
h
(
u,u, C(Ik,Ik)

)]
for each k.

More precisely, we write T (xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n)) = 1
r

∑r−1
k=0 T

σx,σy
k for σx, σy two permu-

tations of JnK. Here, Tσx,σyk are independent and centered random variables such that

|Tσx,σyk | ≤ 2Mn2m maxI1 P U
a (I1) maxI2 P U

b(I2)
≤ 2MD2mn2m(1−γ) (A.31)
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With M = τ(diam(supp(α)) ∪ diam(supp(β))) and where the second inequality uses Definition 8.27. In
what follows we write Tσ = T

(
(xσx(i))i, (yσy(i))i

)
for simplicity. From (A.30), we get

P
(
h
m

U (a,b)− E
[
h
m

U (a,b)
]
≥ t
)
≤ e−λt max

σ
E
[
eλTσ

]
,

Furthermore, for any T = Tσ we have from Lemma 7.3.1 along with (A.31),

E
[
eλT
]
≤

r−1∏
k=0

E
[
e2λ2

r2
M2D4]

= exp
(

2λ
2

r
M2D4mn4m(1−γ)

)
(A.32)

Hence, P
(
h
m

U (a,b)− E
[
h
m

U (a,b)
]
≥ t
)
≤ exp

(
− λt+ 2λ2M2D4mmn4m−1−4mγ

)
Optimizing the latter over λ ∈ R+ and following a similar reasoning for −

(
h
m

U (a,b)− E
[
h
m

U (a,b)
])

gives (A.14) gives the desired results.

The sampling with replacement bounds show that when the minibatch size m gets bigger, a and b
must have a γ close to 1. Now that we have a deviation between the complete estimator and its mean, we
focus on the approximation of the complete estimator with its incomplete counter part.

Deviation between the incomplete and complete estimator h.

We are now ready to give the second and last ingredient of our proof: a deviation between the complete
and the incomplete estimators. And in order to prove it, we rely on the Hoeffding inequality.

Lemma A.1.2 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that Xi

takes its values in [ai, bi] almost surely for all i ≤ n. Let the random variable

S =
n∑
i=1

(Xi − EXi) .

Then for every t > 0, we have:

P{S ≥ t} ≤ exp
(
− 2t2∑n

i=1 (bi − ai)2

)
(A.33)

The next reformulation of the incomplete estimator is useful to prove deviation bounds between the
complete and the incomplete estimators. See Lemma A.1.3 and Theorem 8.3.4 below.

Remark 11. Let m, n ≥ m and k be positive integers. Let
(
ba,b
` (I, J))

)
I,J∈JnKm,1≤`≤k be a sequence of

mutually independent Bernoulli variables of parameter Pa(I)Pb(J) such that

bPa,Pb
` (I, J) =

1 if (I, J) has been selected in the `-th draw
0 otherwise.

We then can write

h̃m,kw,P (a,b) = 1
k

k∑
`=1

∑
I,J∈JnKm

bPa,Pb
` (I, J)h

(
w(a, I), w(b, J), C(I,J)

)

Π̃h,k
w,P (a,b) = 1

k

k∑
`=1

∑
I,J∈JnKm

bPa,Pb
` (I, J)ΠI,J .
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Now we are ready to bound the deviation between the two quantities and the following lemma gives
us the wanted deviation:

Lemma A.1.3 (Deviation bound). Consider two compactly supported distributions α, β, two n-tuples
of empirical data X ∼ α⊗n,Y ∼ β⊗n. Let (a(n)), (b(n)) ∈ Σ be two sequences of probability vectors, let
δ ∈ (0, 1) and an integer k > 1. Consider a reweighting function w, a probability law over m-tuple P as in
Examples 1, 2, 3, 4 and an OT kernel h ∈ {Wp,Wε, Sε,GW p} with a ground cost C as in 8.2. We have a
deviation bound between h̃m,kw,P (a,b) and hmw,P (a,b) depending on the number of minibatches k.

P

(
|h̃m,kw,P (a(n),b(n))− hmw,P (a(n),b(n))| ≥M

√
2 log(2/δ)

k

)
≤ δ, (A.34)

where M = τ(diam(supp(α)) ∪ diam(supp(β)))

Proof. Thanks to Remark 11 we have

h̃m,kw,P (a(n),b(n))− hmw,P (a(n),b(n)) = 1
k

k∑
`=1

ωl

where ωl =
∑
I,J∈JnKm

(
b
Pa(n) ,Pb(n)
` (I, J)−Pa(n)(I)Pb(n)(J)

)
h
(
w(a(n), I), w(b(n), J), C(I,J)

)
. Conditioned

upon X = (x1, · · · ,xn) and Y = (y1, · · · ,yn), the variables ωl are independent, centered and bounded
by 2M with M = τ(diam(supp(α)) ∪ diam(supp(β))) thanks to Lemma A.6. Using Hoeffding’s inequality
yields

P(|h̃m,kw,P (a(n),b(n))− hmw,P (a(n),b(n))| > ε)
= E[P(|h̃m,kw,P (a(n),b(n))− hmw,P (a(n),b(n))| > ε|X,Y )]

= E[P(|1
k

k∑
l=1

ωl)| > ε|X,Y )]

6 E[2e
−kε2

2M2 ] = 2e
−kε2

2M2

which concludes the proof.

Proof of Theorem 8.3.1.

We have now the three ingredients to prove Theorem 8.3.1 :

Theorem 8.3.1 (Maximal deviation bound for compactly supported distributions).
Let δ ∈ (0, 1), k > 1 an integer and m > 1 be a fixed integer. Consider two compactly supported distributions
α, β, two n-tuples of empirical data X ∼ α⊗n,Y ∼ β⊗n and a kernel h ∈ {Wp,W

p
p ,Wε, Sε,GW p} with a

ground cost C as in 8.2. Let the reweighting function w and the probability law over m-tuple P be as in
Examples 1, 2, 3, 4. Let the sequences of probability vectors (a(n)) ∈ Σ and (b(n)) ∈ Σ satisfy LocA(m, γ,D)
and let D > 0 and γ ∈ ( 3

4 , 1]. We have a deviation bound for the sampling without replacement between
h̃m,kw,P (a(n),b(n)) and Ehmw,P (a(n),b(n)) depending on the number of empirical data n and the number of
batches k:

P

|h̃kW (a(n),b(n))− EhmW (a(n),b(n))| ≥M
(

2 D2m
1
2

n2(γ− 3
4 )

√
2 log(2

δ
) +

√
2 log( 2

δ )
k

) ≤ δ. (A.35)
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where M = τ(diam(supp(α)) ∪ diam(supp(β))). And for the sampling with replacement, let the
sequences of probability vectors (a(n)), (b(n)) verify LocG(m, γ,D) for some γ ∈ (1− 1

4m , 1] and D > 0.

P

|h̃kU (a(n),b(n))− EhmU (a(n),b(n))| ≥M
(

2 D2mm
1
2

n2m(γ−1+ 1
4m )

√
2 log(2

δ
) +

√
2 log( 2

δ )
k

) ≤ δ, (A.36)

Proof. With the triangle inequality, we have:

|h̃m,kw,P (a(n),b(n))− Ehmw,P (a(n),b(n))|
≤ |h̃m,kw,P (a(n),b(n))− hmw,P (a(n),b(n))|+ |hmw,P (a(n),b(n))− Ehmw,P (a(n),b(n))| (A.37)

Thanks to Lemma A.1.3 and 15 we get the desired results.

Corollary. It is also possible to have a bound on the expectation over the batch couples and the data.

Corollary 8.31. With the same hypothesis and notations as in Theorem 8.3.1. The following inequality
holds:

E[|h̃kW (a(n),b(n))− EhmW (a(n),b(n))|] 6 20 ·M max
(

2
√

2D2 m
1
2

n2(γ− 3
4 ) ,

√
2
k

)
(A.38)

E[|h̃kU (a(n),b(n))− EhmU (a(n),b(n))|] 6 20 ·M max
(

2
√

2D2m m
1
2

n2m(γ−1+ 1
4m ) ,

√
2
k

)
(A.39)

Proof. Once again, we give the proof for the sampling without replacement and the proof for the sampling
with replacement follows the same steps. The proof for the debiased minibatch is straight forward as we
have three terms of the form h̃kW (a(n),b(n))− EhmW (a(n),b(n)).

Let us recall the formula : for a real random variable X. If X > 0 then E[X] =
´∞

0 P(X > λ)dλ. We
denote by X the random variable |h̃kW (a(n),b(n))− EhmW (a(n),b(n))|. The last Theorem 8.3.1 writes

P

(
X > C

√
log(2

δ
)
)

6 δ

where C := 2M max(2
√

2D2 m
1
2

n2(γ− 3
4 ) ,
√

2
k ). We can rewrite it as

P(X > λ) 6 exp (− λ
2

C2 )

Thus, using the formula above:

E[X] 6
ˆ ∞

0
exp (− λ

2

C2 )dλ

= C

ˆ ∞
0

exp(−u2)du 6 10C

as announced.

Bounded cost. In this paragraph we also prove the case for bounded cost.

Theorem 8.3.3 (Maximal deviation bound for bounded cost). Let δ ∈ (0, 1), k > 1 an integer and
m > 1 be a fixed integer. Consider two distributions α, β possibly unbounded, two n-tuples of empirical
data X ∼ α⊗n,Y ∼ β⊗n and a kernel h ∈ {Wp,W

p
p ,L

ε, Sε,GW} with a ground cost C as in 8.2. Let
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the reweighting function w and the probability law over m-tuple P be as in Examples 1, 2, 3, 4. Let
the sequences of probability vectors (a(n)) ∈ Σ and (b(n)) ∈ Σ satisfy LocA(m, γ,D) and let D > 0 and
γ ∈ ( 3

4 , 1]. We have a deviation bound for the sampling without replacement between h̃m,kw,P (a(n),b(n)) and
Ehmw,P (a(n),b(n)) depending on the number of empirical data n and the number of batches k:

P

|h̃m,kW (a(n),b(n))− EhmW (a(n),b(n))| ≥M
(

2 D2m
1
2

n2(γ− 3
4 )

√
2 log(2

δ
) +

√
2 log( 2

δ )
k

) ≤ δ, (A.40)

where M is an upper bound on the ground cost. And for the sampling with replacement, let the
sequences of probability vectors (a(n)), (b(n)) verify LocG(m, γ,D) for some γ ∈ (1− 1

4m , 1] and D > 0, we
have:

P

|h̃m,kU (a(n),b(n))− EhmU (a(n),b(n))| ≥M
(

2 D2mm
1
2

n2m( 1
4m−1+γ)

√
2 log(2

δ
) +

√
2 log( 2

δ )
k

) ≤ δ. (A.41)

Proof. The proof is the same as for Theorem 8.3.1. The only difference is that we do not need to have
compactly supported data to bound the OT kernel in (A.22), as the OT kernel is bounded by assumption
on the ground cost.

A.1.3 Concentration theorem (sub-Gaussian)

In this section we relax the assumption of bounded data and give a proof for Theorem 8.3.2. The proof
for the sub-Gaussian case rely on a truncation argument between data that lie in some compact data
which do not. We start by recalling the sub-Gaussian data definition:

Definition 28 (sub-Gaussian random vectors). A random vector x ∈ Rd is sub-Gaussian, if there exists
σ ∈ R so that:

Ee〈y,x−Ex〉 ≤ e
‖y‖2σ2

2 , ∀y ∈ Rd

We write the class of sub-Gaussian random vectors as SG(σ). For the sake of simplicity, we consider
the following class of random vectors:

Definition 29 (Norm sub-Gaussian data [Jin 2019]). Let x ∈ Rd be a random vector and ρx = Ex. We
say that x ∈ normSG(ρx, σ2) for some σ > 0 if the following inequality holds

P
(
‖x− ρx‖ ≥ t

)
≤ 2 exp

(
− t2

2σ2

)
. (A.42)

Norm sub-Gaussian random vectors are a generalization of both sub-Gaussian random vectors and
norm bounded random vectors. They show tighter concentration bounds than sub-Gaussian random
vectors. We also have the following inclusion: SG(σ/

√
d) ⊂ normSG(σ) ⊂ SG(σ), see [Jin 2019] for a

detailed review of the connections between these two random vector classes.

Theorem 8.3.2 (Concentration inequality sub-Gaussian data). Let the cost C = Cn,p be defined
as in (8.2). Let (xi)1≤i≤n and (yi)1≤i≤n be two i.i.d. sequences of random vectors such that
x1 ∈ normSG(ρx, σ2

x) and y1 ∈ normSG(ρy, σ2
y) with σx, σy > 0 and ρx, ρy ∈ Rd. Let us introduce

σ := min(σx, σy)
ρ := ‖ρx − ρy‖2
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Let the sequence probability vectors (a(n)), (b(n)) verify LocA(m, γ,D) for some γ ∈ ( 3
4 , 1] and D > 0. We

assume that n verifies the following condition:

n ≥ τ(m,σ, ρ,D, p). (A.43)

Consider m > 1 be a fixed integer and a kernel h ∈ {Wp,W
ε, Sε}. Let the reweighting function wW and

the probability law over m-tuple P W be as in Examples 2 and 4. Then we have the following concentration
bound for the sampling without replacement:

P

(∣∣∣hmW (a(n),b(n))− EhmW (a(n),b(n))
∣∣∣ ≥ (23p+4m) 1

2σpD2 · log(4n) p+1
2

n2(γ− 3
4 )

)
≤ 4n− 1

2p , (A.44)

Proof. Let us fix ε > 0 to be chosen later. We use the following notations for δ > 0

∆ := h
m

w,P (a(n),b(n))− Ehmw,P (a(n),b(n)), (A.45)

Aδ :=
n⋂
i=1
{‖xi − ρx‖2 ≤ δ} ∩ {‖yi − ρy‖2 ≤ δ} (A.46)

We estimate,

P[|∆| ≥ ε] ≤ P
[
|∆|1Aδ ≥

ε

2
]

+ P
[
|∆|1Ac

δ
≥ ε

2
]
, (A.47)

First, by the union bound, we have

P
[
|∆|1Ac

δ
≥ ε

2
]
≤ P

[
Acδ
]
≤ 4n exp

(
− δ2

2σ2

)
(A.48)

Next, we claim that

P
[
|∆|1Aδ ≥

ε

2
]
≤ 2 exp

(
− n4(γ− 3

4 )

4p+2D4(ρ+ δ)2p ε
2
)

+ 4n exp
(
− δ2

2σ2
) (A.49)

assuming the following conditions together with (A.43),

ε ≥ 4n1−2γ · n 1
5 (A.50)

δ ≥ σ
√

2 log(n). (A.51)

Let us show how (A.49) comes from a slight modification of the (proof) of (A.13). Using the same
notations as in the proof of (A.13) we have (in place of (A.20)):

∆1Aδ = 1
n!2

∑
σx,σy

T (xσx(1), · · · ,xσx(n),yσy(1), · · · ,yσy(n))1Aδ ,

and

T (x1, · · · ,xn,y1, · · · ,yn) = 1
r

r−1∑
k=0

Tk
(
(xi)i∈Ik , (yi)i∈Ik

)
. (A.52)

We emphasize that for each 1 ≤ k ≤ r − 1, Tk depends only on the set Ik := {km + 1, · · · , km + m}.
Moreover, the variables (Tk)k are mutually independent.

As in the proof of Proposition 15 is suffices to estimate P (∆1Aδ ≥ t) up to a factor 2. We have,

P (∆1Aδ ≥ t) ≤ e−λt max
σ

E
[
eλTσ1Aδ

]
. (A.53)
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For simplicity, we assume that the maximum in (A.53) is attained at σ = Id. Observe the following
equality

1Aδ =
n∏
i=1

1B(ρx,δ)(Xi)1B(ρy,δ)(Yi) (A.54)

We write T = TId and insert the indicator function 1B(ρx,δ)c(X1) using (A.54) and (A.52),

E
[
eλT1Aδ

]
= E

[
exp

(λ
r

r−1∑
k=1

Tk1Aδ
)]

= E
[
1B(ρx,δ)c(X1)

]
+ E

[
exp

(λ
r

r−1∑
k=1

Tk1Aδ
)

1B(ρx,δ)(X1)
]
.

Hence, by repeating this procedure we find, using the tail estimate on the variables Xk, Yk (1 ≤ k ≤ n):

E
[
eλTId1Aδ

]
≤ 4n exp

(
− δ2

2σ2
)

+ E
[

exp
(λ
r

r−1∑
k=1

Tk

)
1Aδ

]
. (A.55)

The first term in the right on side is the same as in (A.48) so this loss is acceptable. In the following,

we estimate E
[

exp
(
λ
r

∑r−1
k=1 Tk

)
1Aδ

]
. We denote, for each 0 ≤ k ≤ r − 1, by Aδ(k) the set of data from

X(Ik) which belong to the ball of radius δ around their mean:

Aδ(k) :=
⋂
i∈Ik
{‖xi − ρx‖2 ≤ δ} ∩ {‖yi − ρy‖2 ≤ δ},

and the set of the remaining n− rm data:

Aδ(r) :=
n⋂

i=rm+1
{‖xi − ρx‖2 ≤ δ} ∩ {‖yi − ρy‖2 ≤ δ}.

Using the independence properties of the Tk’s recalled above we get

E
[

exp
(λ
r

r−1∑
k=1

Tk

)
1Aδ

]
= E

[ r−1∏
k=1

(
exp

(λ
r
Tk
)
1Aδ(k)

)
1Aδ(r)

]
=

r−1∏
k=1

E
[

exp
(λ
r
Tk
)
1Aδ(k)

]
E
[
1Aδ(r)

]
≤

r−1∏
k=1

E
[

exp
(λ
r
Tk
)
1Aδ(k)

]
. (A.56)

Hence, it suffices to estimate E
[

exp
(
λ
r Tk

)
1Aδ(k)

]
for a fixed 0 ≤ k ≤ r − 1. Let 0 ≤ k ≤ r − 1. From

Lemma A.6, the LocA(m, γ,D) property of our variables, we have for ω ∈ Aδ(k):∣∣Tωk ((xi)i∈Ik , (yi)i∈Ik)∣∣ ≤ (2(ρ+ δ)
)p
D2n2(1−γ) =: Mδ. (A.57)

Unfortunately, we can not use Lemma 7.3.1 on Tωk because we need to have a bounded random variable.
To overcome this issue we introduce:

T δk := Tk1|Tk|≤Mδ
+Mδ1|Tk|>Mδ

. (A.58)
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which is bounded by Mδ. Note that by construction the following equality holds

E
[

exp
(λ
r
Tk
)
1Aδ(k)

]
= E

[
exp

(λ
r
T δk
)
1Aδ(k)

]
.

Thus we can compute using Lemma 7.3.1:

E
[

exp
(λ
r
Tk
)
1Aδ(k)

]
= E

[
exp

(λ
r

(T δk − E
[
T δk
]
)
)
1Aδ(k)

]
exp

(λ
r
E
[
T δk
])

≤ exp
(λ2M2

δ

8r2
)

exp
(λ
r
E
[
T δk
])
. (A.59)

Hence, taking the products in (A.59) for 0 ≤ k ≤ r, we have

(A.56) ≤
r−1∏
k=0

exp
(λ2M2

δ

8r2
)
·
r−1∏
k=0

exp
(λ
r
E
[
T δk
])
. (A.60)

From Lemma A.1.4 proven below, we have∣∣E[T δk ]∣∣ ≤ n1−2γ+ 1
5 (A.61)

Thus, combining (A.60) and (A.61) we get by optimizing in λ the inequalities,

(A.53) ≤ exp
(λ2mM2

δ

4n − λ(t− n1−2γ · n 1
5 )
)

≤ exp
(
− n

mM2
δ

(t− n1−2γ · n 1
5 )2
)

≤ exp
(
− n

4mM2
δ

t2
)
,

= exp
(
− n4(γ− 3

4 )

4p+1mD4(ρ+ δ)2p t
2
)
, (A.62)

assuming

t ≥ 2n1−2γ · n 1
5 , (A.63)

which comes from (A.50) since t = ε
2 . Together with (A.55), this shows the claim (A.49).

Thus, combining (A.48) and (A.49) gives

(A.47) ≤ 2 exp
(
− n4(γ− 3

4 )

4p+2D4(ρ+ δ)2p ε
2
)

+ 8n exp
(
− δ2

2σ2

)
=: Ξ1 + Ξ2 (A.64)

Setting δ = δn such that Ξ1 = Ξ2 we find that δn satisfies the equation given by:

P (δ) := aδ2(ρ+ δ)2p + b(ρ+ δ)2p + c = 0 (A.65)

with

a := 1
2σ2 , (A.66)

b := − log(4n), (A.67)

c := − n4(γ− 3
4 )

4p+2mD4 ε
2 (A.68)
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Such a δn exists by the intermediate value theorem since P (0) < 0 and limδ→+∞ P (δ) = +∞. Note that
(A.65) writes

1
2σ2 δ

2
n(ρ+ δn)2p = log(4n)(ρ+ δn)2p + n4(γ− 3

4 )

4p+2mD4 ε
2, (A.69)

which implies
δn ≥ σ

√
2 log(4n) (A.70)

We are interested in getting an upper bound of our quantity. Let us assume that we have:

n4(γ− 3
4 )

4p+2mD4 ε
2 ≤ log(4n)(ρ+ δn)2p. (A.71)

If (A.71) holds then we have

1
2σ2 δ

2
n(ρ+ δn)2p ≤ 2 log(4n)(ρ+ δn)2p,

and hence

δn ≤ 2σ
√

log(4n), (A.72)

showing that (A.70) is essentially sharp. We now investigate under which condition (A.71) holds. From
(A.70) the condition (A.71) holds if we have

n4(γ− 3
4 )

4p+2mD4 ε
2 ≤ log(4n)

(
ρ+ σ

√
2 log(4n)

)2p
.

It suffices to have,

n4(γ− 3
4 )

4p+2mD4 ε
2 ≤ log(4n)(2σ2 log(4n))p. (A.73)

We thus choose the parameter e as follows

ε2 = 23p+4mσ2pD4 · log(4n)p+1

n4(γ− 3
4 ) . (A.74)

Note that the condition (A.74) implies that (A.50) is verified for n large enough (i.e. under (A.43)). If
(A.74) holds, then the condition (A.73) is verified and hence (A.72) holds. We now compute,

(A.64) = 2Ξ1

≤ 4 exp
(
− n4(γ− 3

4 )

4p+2mD4(ρ+ δ)2p ε
2
)

≤ 4 exp
(
− (2σ2)p log(4n)p+1

(ρ+ δ)2p

)
≤ 4 exp

(
− log(4n)

2p
)

≤ 4n− 1
2p

Lemma A.1.4. Assuming the conditions (A.50), (A.51) and (A.43) we have the following bound:∣∣E[T δk ]∣∣ ≤ n1−2γ+ 1
5
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Proof. We write

E
[
T δk
]

= E
[
T δk1Aδ(k)

]
+ E

[
T δk1Aδ(k)c

]
=: I + II

(A.75)

From (A.58) we observe using the definition of Mδ in (A.57), the union bound and the inequality
e−x = e−

1
5x · e− 4

5x ≤ τ
xp · e

− 4
5x for x, p ≥ 1 and some constant τ = τ(p).

|II| ≤ Mδ · P
(
Aδ(k)c

)
≤
(
2(ρ+ δ)

)p
D2n2(1−γ) · 4m exp

(
− δ2

2σ2

)
≤ τ(D,m, σ, p) · δpn2(1−γ) · τ(p)

δ2p exp
(
−4

5 ·
δ2

2σ2

)
≤ τ(D,m, σ, p) · 1

log(n) p2
n2(1−γ) · n− 4

5

≤ 1
2n

1−2γ+ 1
5 . (A.76)

In the above, we used the assumptions (A.51) and (A.43) in the last two inequalities.
We now estimate the contribution of I. Recalling the definition of T δk in (A.58) we observe the following

using the definition of Mδ in (A.57) and the fact that Tk is a mean-zero random variable,

I = E
[
Tk1|Tk|≤Mδ

1Aδ(k)
]

= E
[
Tk1Aδ(k)

]
= −E

[
Tk1Aδ(k)c

]
. (A.77)

Note that the the indicator function 1Aδ(k)c can be expressed as the superposition of at most 4m functions
of the form

f(J1, J2) :=
∏
k1∈J1

1B(ρx,δ)c(xk1) ·
∏
k2∈J2

1B(ρy,δ)c(yk2), (A.78)

where J1, J2 ⊂ Ik with |J1|+ |J2| ≥ 1. Consider a positive real numbers r and a vector z, we denote an
annulus around the vector z as A(z, r), i.e., x ∈ A(z, r) if r ≤ ‖x− z‖2 ≤ 2r. For i ∈ {1, 2} let ti = |Ji|
and write Ji = {j1(i), · · · , jti(i)}. By decomposing each indicator function in (A.78) dyadically we get
from the (mutual) independence of the variables {xi,yj : (i, j) ∈ J1 × J2} and Lemma A.1.1,

∣∣E[Tkf(J1, J2)
]∣∣ =

=
∣∣∣∣∣E
[
Tk

t1∏
i1=1

( ∑
`(ji1 (1))≥0

1A(ρx,2`(ji1 (1))
δ)(xji1 (1))

)
×

t2∏
i2=1

( ∑
`(ji2 (2))≥0

1A(ρy,2`(ji2 (2))
δ)(yji2 (2))

)]∣∣∣∣∣ (A.79)

=
∣∣∣∣∣ ∑
`(j1(1)),···`(jt1 (1))≥0
`(j1(2)),···`(jt2 (2))≥0

E

[
Tk

∏
1≤i1≤t1
1≤i2≤t2

1A(ρx,2`(ji1 (1))
δ)(xji1 (1))1A(ρy,2`(ji2 (2))

δ)(yji2 (2))
]∣∣∣∣∣

≤
∑

`(j1(1)),···`(jt1 (1))≥0
`(j1(2)),···`(jt2 (2))≥0

D2n2(1−γ)(ρ+ 2`max+1δ)p
∏

1≤i1≤t1
1≤i2≤t2

E
[
1A(ρx,2`(ji1 (1))

δ)(xji1 (1))
]
E
[
1A(ρy,2`(ji2 (2))

δ)(yji2 (2))
]
,

(A.80)

where `max = max
(
`(j1(1)), · · · `(jt1(1)), `(j1(2)), · · · `(jt2(2)

)
. Hence, the sub-Gaussian assumption

on the family {xi,yj : (i, j) ∈ J1 × J2, } yields using again the inequality e−x = e−
1
5x · e− 4

5x ≤ C
xp · e

− 4
5x
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for x, p ≥ 1 and some constant τ = τ(p),

(A.80) ≤ D2n2(1−γ)
∑

`(j1(1)),···`(jt1 (1))≥0
`(j1(2)),···`(jt2 (2))≥0

(ρ+ 2`max+1δ)p

×
∏

1≤i1≤t1
1≤i2≤t2

exp
(
− (2`(ji1 (1))δ)2

2σ2

)
exp

(
− (2`(ji2 (2))δ)2

2σ2

)

≤ τ(p,m, σ,D) · n2(1−γ) exp
(
− 2δ2

5σ2
(
t1 + t2

))
×

∑
`(j1(1)),···`(jt1 (1))≥0
`(j1(2)),···`(jt2 (2))≥0

(2`maxδ)p ·
∏

1≤i1≤t1

1
(2`(ji1 (1))δ)2p ·

∏
1≤i2≤t2

1
(2`(ji2 (2))δ)2p

≤ τ(p,m, σ,D) · n2(1−γ) exp
(
− 2δ2

5σ2
(
t1 + t2

))
· δp

δ2(t1+t2) ·
(∑
`≥0

2−p`
)t1+t2

≤ τ(p,m, σ,D) · n2(1−γ) 1
δ

exp
(
− 2δ2

5σ2

)
≤ τ(p,m, σ,D) · n2(1−γ) 1

n
4
5
√

log(n)
. (A.81)

In the second inequality, we used the fact that ρ is upper bounded by 2`max+1δ due to the hypotheses
(A.51) and (A.43). In the last inequality we used that 1 ≤ t1 + t2 ≤ 2m. Hence, from (A.78) and (A.81)
we estimate

|I| ≤ max
(J1,J2)

∣∣E[Tkf(J1, J2)
]∣∣

≤ 4m · τ(p,m, σ,D) · n2(1−γ) 1
n

4
5
√

log(n)
≤ 1

2n
1−2γ · n 1

5 , (A.82)

for n as in (A.43). Combining (A.81) and (A.76) with (A.75) yields the desired result.

Now that we have bound the deviation between the complete estimator and its expectation, let us bound
the deviation between the complete estimator and its incomplete counter part.

Remark 12. Theorem 8.3.2 holds when the distributions are compactly supported. Suppose we have
probability sequences (a(n)) and (b(n)). Setting δ = n−

1
2p in (A.13) gives:

P

(∣∣hmW (a(n),b(n))− EhmW (a(n),b(n))
∣∣ ≥ 2 3

2−
p
2MD2 m

1
2

n2(γ− 3
4 )

√
log(n)

)
≤ n− 1

2p

Hence we essentially lose a log(n) p2 factor in comparison with (A.44).

We now discuss the difference between the deviation bounds of the estimator h and its mean in the
bounded and unbounded data cases.

Remark 13. The proof of Lemma A.1.3 also yields

P

(∣∣h̃m,kw,P (a(n),b(n))− hmw,P (a(n),b(n))
∣∣ ≥M√2 log(2/δ)

k

∣∣∣x1,y1, · · · ,xn,yn

)
≤ δ (A.83)

for sub-Gaussian data x1,y1, · · · ,xn,yn and any δ > 0.
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A.1.4 Distance to marginals

In this appendix, we give the details of the proof of Theorem 8.3.4. In what follows, we denote by Π(i)

the i-th row of matrix Π. Let us denote by 1 ∈ Rn the vector whose entries are all equal to 1.

Theorem 8.3.4 (Distance to marginals). Let δ ∈ (0, 1), two integers m ≤ n and consider two sequences
of probability vectors (a(n)), (b(n)) ∈ Σ. Let a ground cost C = Cm,p for some p ≥ 1 as in 8.2. Consider
an OT kernel h ∈ {Wp,W

p
p ,W

ε, Sε,GW}. Suppose now that the probability law over m-tuples P and the
reweighting function w, as defined in (8.12) and (8.13), satisfy the admissibility condition (8.21). For all
integers k > 1 and all integers 1 6 i 6 n, we have:

P

(∣∣∣Π̃h,k
w,P (a(n),b(n))(i)1− a

(n)
i

∣∣∣ ≥√2 log(2/δ)
k

)
≤ δ (A.84)

Proof. Let us recall that thanks to the admissibility condition (8.21), Πh

w,P is a transport plan be-
tween the input probability vectors a(n) and b(n) and hence, it verifies the marginal constraints, i.e
(Πh

w,P (a(n),b(n)))i × 1 = ai. Thanks to Remark 11 we have

Π̃h,k
w,P (a(n),b(n))(i)1 = 1

k

k∑
`=1

ω`

where ω` =
∑
I,J∈(JnKm)2

∑n
j=1(ΠI,J)i,jb

Pa(n) ,Pb(n)
` (I, J). Conditioned upon X = (x1, · · · ,xn) and

Y = (y1, · · · ,yn), the random vectors ωp are independent, and bounded by 1. Moreover, one can observe
that E[Π̃h,k

w,P (a(n),b(n))i1] = Πh

w,P (a(n),b(n))i1. Using Hoeffding’s inequality yields

P(|Π̃h,k
w,P (a(n),b(n))i1−Πh

w,P (a(n),b(n))i1)| > ε) = E[P(|1
k

k∑
p=1

ωp − E[ 1
k

k∑
p=1

ωp])| > ε|X,Y )]

6 2e−2kε2

which concludes the proof.

A.1.5 Optimization

This appendix is dedicated to providing the full statements and proofs of Theorem 8.3.5 and Theorem
8.3.6:

Theorem 8.3.5. Let a,b ∈ Σm. Let X be a Rdm-valued random variable, and {Yθ} a family of Rdm-
valued random variables defined on the same probability space, indexed by θ ∈ Θ, where Θ ⊂ Rq is open.
Assume that θ 7→ Yθ is C1. Denote C = Cm,p for some p ≥ 1 and let h ∈ {L,Lε}. Then the function
θ 7→ −h(a,b, C(X,Yθ)) is Clarke regular and for all 1 ≤ i ≤ q we have:

∂θih(a,b, C(X,Yθ)) = co{−tr(P ·DT ) · (∇θiY ) :P ∈ Opt(h,C(X,Yθ),a,b), (A.85)
D ∈ Rm,m, Dj,k ∈ ∂Y Cj,k(X,Yθ)}

where ∂θi is the Clare subdifferential with respect to θi, ∂Y Cj,k is the subdifferential of the cell Cj,k of the
cost matrix with respect to Y , co denotes the closed convex hull and Opt(h,C,a,b) is defined in Definition
18.
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For h = GW and p > 1, the function −h(a,b, C(X,X), C(Yθ,Yθ)) is also Clarke regular, and we
have:

∂θih(a,b, C(X,X), C(Yθ,Yθ)) = {−
m∑

j1,j2,k1,k2=1
Dj1,k1,j2,k2Pj1,j2Pk1,k2 · (∇θiY ) : (A.86)

P ∈Opt(h,C(X,X), C(Yθ,Yθ),a,b) (A.87)
D ∈(Rm)4, Dj1,k1,j2,k2 = ∇Y Cj1,k1,j2,k2(X,Yθ)}

where Cj1,k1,j2,k2 = ‖Cj1,k1(X,X)− Cj2,k2(Yθ,Yθ)‖p.

Proof. We start with the case h ∈ {L,Lε}. The function Y 7→ Cj,k(X,Y ) is equal to ‖xj − yk‖p2. It is
therefore convex, and thus Clarke regular by Proposition 2.3.6(b) [Clarke 1990]. Since θ 7→ Yθ is C1, from
Theorem 2.3.10 [Clarke 1990] it follows that θ 7→ Cm,pj,k (X,Yθ) is Clarke regular, and:

∂θiCj,k(X,Yθ) = {Dj,k · ∇θiYθ : Dj,k ∈ ∂Y Cj,k(X,Yθ)}.

Note, that the set of admissible transport plans for any marginals a,b ∈ Σm is compact. Furthermore, the
transport cost for a given plan P is a linear function of cost matrix C. Therefore, from Danskin’s Theorem
(Proposition B.25 [Bertsekas 1997]) it follows that for h ∈ {L,Lε} the function C 7→ −h(a,b, C) is convex,
and it’s subderivative is equal to Opt(h,C,a,b). Therefore from Theorem 2.3.9(i) and Proposition 2.3.1
(for s = 1) in [Clarke 1990] it follows that θ 7→ −h(a,b, C(X,Yθ)) is Clarke regular for h ∈ {L,Lε}, and
that (A.85) holds.

Assume now that h = GW and that p > 1. The proof is analogous. In this case, the function
Y 7→ Cj1,k1,j2,k2(X,Y ) is differentiable. Therefore the function θ 7→ Cj1,k1,j2,k2(X,Yθ) is differentiable.
Again the set of admissible transport plans is compact and for a given transport plan, the transport
cost is a linear function of the four dimensional tensor Cj1,k1,j2,k2 . Therefore, using Danskin’s Theorem
(Proposition B.25 [Bertsekas 1997]), as well as Theorem 2.3.10 and Proposition 2.3.1 in [Clarke 1990] we
get that −h(a,b, C(X,X), C(Yθ,Yθ)) is Clarke regular and the formula (A.86) holds.

Theorem 8.3.6. Let a,b,X,Y , C be as in theorem 8.3.5, h ∈ {L,Lε}, and assume in addition that the
random variables X, {Yθ}θ∈Θ have finite p-moments. If for all θ ∈ Θ there exists an open neighbourhood
U , θ ∈ U ⊂ Θ, and a random variable KU : Ω→ R with finite expected value, such that

‖C(X(ω),Yθ1(ω))− C(X(ω),Yθ2(ω))‖ ≤ KU (ω)‖θ1 − θ2‖ (A.88)

then we have

∂θE [h(a,b, C(X,Yθ))] = E [∂θh(a,b, C(X,Yθ))] . (A.89)

with both expectation being finite. Furthermore the function θ 7→ −E [h(a,b, C(X,Yθ))] is also Clarke
regular.

For h = GW , assume that p > 1 and that random variables X, {Yθ} have finite 2p-moments. Assume
also that for each θ ∈ Θ there exists an open neighbourhood U , θ ∈ U ⊂ Θ, and a random variable
KU : Ω→ R with finite expected value, such that

‖C̃(X(ω),Yθ1(ω))− C̃(X(ω),Yθ2(ω))‖ ≤ KU (ω)‖θ1 − θ2‖ (A.90)

where C̃(X,Y ) = ‖C(X,X)− C(Y ,Y )‖p. Then we have

∂θE [h(a,b, C(X,X), C(Yθ,Yθ))] = E [∂θh(a,b, C(X,X), C(Yθ,Yθ))] . (A.91)

with both expectation being finite. Furthermore the function θ 7→ −E [h(a,b, C(X,X), C(Yθ,Yθ))] is also
Clarke regular.
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Proof. We start with the case h ∈ {L,Lε}. Suppose that U ⊂ Θ is open and KU is a function for
which (A.88) is satisfied. Then the same bound is also satisfied for the function h(a,b, C(X(ω),Yθ(ω))),
since the function C 7→ h(a,b, C) is 1-Lipshitz. Hence, given the regularity of −h(a,b, C(X,Yθ)), the
interchange (A.89) and regularity of θ 7→ −E[h(a,b, C(X,Yθ))] will follow from Theorem 2.7.2 and
Remark 2.3.5 [Clarke 1990], once we establish that the expectation on the left hand side is finite. This
follows trivially from the standard bound:

‖x− y‖p ≤ 2p−1(‖x‖p + ‖y‖p) (A.92)

and the assumption that X,Yθ have finite p-moments. The same argument applies to the case when
h = GW . The GW cost depends on the four-dimensional tensor Cj1,k1,j2,k2 defined in the proof of Theorem
8.3.5 in a Lipshitz manner, since it’s supdifferential is bounded. Again, the thesis for h = GW will follow
from Theorem 2.7.2 and Remark 2.3.5 [Clarke 1990], once we establish that the expectation on the left
hand side of (A.91) is finite. This follows from applying the bound (A.92) twice and the assumption of
finite 2p-moments.

A.1.6 Minibatch OT closed-form solution for 1D data

We now give the closed-form combinatorial calculus for the 1D data. We start by sorting all the data and
give to each of them an index which represents their position after the sorting phase. Then we select and
sort all the minibatches. xj can not be at a position superior to its index j inside a batch. For a fixed xj ,
a simple combinatorial arguments tells you that there are Cixj sets where xj is at the i-th position:

Cm,ni,xj
=
(
j − 1
i− 1

)(
n− j
m− i

)
(A.93)

Suppose that xj is transported to a yk points in the target mini batch. Then, they both share the same
positions i in their respective minibatch. As there are several i where xj is transported to yk, we sum over
all those possible positions. Hence our current transport matrix coefficient Πj,k can be calculated as :

Πj,k =
imax∑
i=imin

Cm,ni,xj
Cm,ni,yk

(A.94)

Where imin = max(0,m− n+ j,m− n+ k) and imax = min(j, k). imin and imax represent the sorting
constraints. Furthermore, as we have uniform weight histograms, we will transport a mass of 1

m and
averaged it by the total number of transport. So finally, our transport matrix coefficient Πj,k are:

Πj,k = 1

m

(
n

m

)2

imax∑
i=imin

Cm,ni,xj
Cm,ni,yk

(A.95)

The sampling with replacement case is much more complex and highly computationally costly. Following
the same strategy as above, we sort all minibatches. In this case, xi might appears several times more or
less than yj and we need to take that into account. We denote mi the number of repetitions of the i-th
element and the summation |vecm| =

∑m
k=1mk. We denote N i,j

m1,m2
the number of times that xi and yj

share the same position in their respective minibatches m1 and m2, after sorting. For the coefficient πi,j ,
we have :

πi,j = 1
m

(
1

mnm−1

)2 ∑
|vecms|=m

∑
|vecmt|=m

N i,j
ms,mt (A.96)
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A.2 Proofs of Chapter 9
While many proofs are similar to the proofs of Chapter 8, we recall them for readers interested only for
the uniform measure case. We start with the basic properties of minibatch OT proof in Section A.2.1.
Then we prove several UOT properties in Section A.2.2. The UOT properties are at the heart of the main
statistical and optimization proofs presented in Section A.2.3.

A.2.1 Basic properties

Proposition 16 (Positivity, symmetry and bias). The minibatch UOT are positive and symmetric losses.
However, they are not definites, i.e., hm(X,X) > 0 for non trivial X, τ > 0 and 1 < m < n.

Proof. The first two properties are inherited from the classical UOT cost. Consider a uniform probability
vector and random 3-data tuple X = (x1,x2,x3) with distinct vectors (xi)1≤i≤3. As hm is an average
of positive terms, it is equal to 0 if and only if each of its term is 0. But consider the minibatch term
I1 = (i1, i2) and I2 = (i1, i3), then obviously h(u,u, C(X(I1),X(I2))) 6= 0 as x2 6= x3, where X(I1)
denotes the data minibatch corresponding to indices in I1.

We now give the proof for our claim "A simple combinatorial argument assures that the sum of um
over all m-tuples I gives un."

Proposition 17 (Averaged distributions). Let um be a uniform vector of size m. The average over
m-tuples I ∈ Pm for a given index of um is equal to ma

n , i.e., ∀i ∈ J1, nK,
∑
I∈Pm(um)i = (un)i = ma

n .

Proof. We recall that Pm denotes the set of all m-tuples without repeated elements. Let us check we
recover the initial weights (un)i = ma

n . Observe that
∑n
i=1 ai = ma and that for each 1 ≤ i ≤ n

]{I ∈ Pm : i ∈ I} = ]{I ∈ Pm : n ∈ I}
= ]{I = (i1, . . . , im) ∈ Pm : i1 = n}+ . . .+ ]{I = (i1, . . . , im) ∈ Pm : im = n}

= m · ]{I = (i1, . . . , im) ∈ Pm : im = n}. (A.97)

Since ]{I = (i1, . . . , im) ∈ Pm : im = n} is the number of (m − 1)-tuples without repeated indices of
J1, n− 1K, (n− 1)!/(n−m)!, it follows that

(n−m)!
n! ·

∑
I∈Pm

ma
m

1I(i) = (n−m)!
n!

∑
I∈Pm,i∈I

ma
m

= (n−m)!
n!

ma
m
· ]{I ∈ Pm : i ∈ I} (A.98)

= (n−m)!
n!

ma
m
m · (n− 1)!

(n−m)! = ma
n

(A.99)

A.2.2 Unbalanced Optimal Transport properties

In this appendix we prove the UOT properties necessary to prove the minibatch statistical and optimization
theorems. We start with the robustness property and we follow with upper bound, bounded transport
plan and Lipschitz properties.

We recall the definition of Csiszàr divergences. Consider a convex, positive, lower-semicontinuous
function such that φ(1) = 0. Define its recession constant as φ′∞ = limx→+∞ φ(x)/x. The Csiszàr
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divergence between positively weighted vectors (x,y) ∈ Rd+ reads

Dφ(x,y) =
∑
yi 6=0

yiφ
(xi
yi

)
+ φ′∞

∑
yi=0

xi.

It allows to generalize OT programs. We retrieve common penalties such as Total Variation and
Kullback-Leibler divergence by respectively taking φ(x) = |x − 1| and φ(x) = (x logx − x + 1). We
provide a generalized definition of all OT programs as

OTτ,εφ (a,b, C) = min
Π∈Rn×n+

F(Π, C) = min
Π∈Rn×n+

〈C,Π〉+ τDφ(Π1n|a) + τDφ(ΠT1n|b) + εKL(Π|a ⊗ b).

Where F denotes the UOT energy.

Robustness

We start by showing the robustness properties Lemma 9.1.1 that we split in two different lemmas. Lemma
9.1.1.a shows that the UOT cost is robust to an outlier while Lemma 9.1.1.b shows that OT is not robust
to an outlier.

Lemma 9.1.1.a. Take (µ, ν) two probability measures with compact support, and z outside of ν’s support.
Recall the Gaussian-Hellinger distance [Liero 2017] between two positive measures as

GHτ (µ, ν) = inf
π≥0

ˆ
C(x, y)dπ(x, y) + τKL(π1|µ) + τKL(π2|ν).

For ζ ∈ [0, 1], write µ̃ = ζµ+(1−ζ)δz a measure perturbed by a Dirac outlier. Write m(z) =
´
C(z, y)dν(y).

One has

GHτ (µ̃, ν) ≤ ζ GHτ (µ, ν) + 2τ(1− ζ)(1− e−m(z)/2τ ). (A.100)

In particular, with the notation OTτ,0KL it reads

OTτ,0KL (µ̃, ν, C) ≤ ζ OTτ,0KL (µ, ν, C) + 2τ(1− ζ)(1− e−m(z)/2τ ).

Proof. Write π the optimal plan for OTτ,0φ (µ, ν). We consider a suboptimal plan for OTτ,0φ (µ̃, ν) of the
form

π̃ = ζπ + (1− ζ)κδz ⊗ ν,

where κ is mass parameter which will be optimized after. Note that the marginals of the plan π̃ are
π̃1 = ζπ1 + (1− ζ)κδz and π̃2 = ζπ2 + (1− ζ)κν. Note that KL is jointly convex, thus one has

KL(π̃1|µ̃) ≤ ζKL(π1|µ) + (1− ζ)KL(κδz|δz),
KL(π̃2|µ̃) ≤ ζKL(π2|ν) + (1− ζ)KL(κν|ν).

Thus a convex inequality yields

OTτ,0φ (µ̃, ν) ≤ ζ
[ ˆ
||x− y||dπ(x, y) + τKL(π1|µ) + τKL(π2|ν)

]
+ (1− ζ)

[
κm(z) + τKL(κδz|δz) + τKL(κν|ν)

]
.
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We optimize now the upper bound w.r.t. κ. Both KL terms are equal to φ(κ) = κ log κ − κ + 1, thus
differentiating w.r.t. κ yields

m(z) + 2τ log κ = 0⇒ κ = e−m(z)/2τ .

Reusing this expression of κ in the upper bound yields Equation (A.100).

Lemma 9.1.1.b. Take (µ, ν) two probability measures with compact support, and z outside of ν’s support.
Define the Wasserstein distance between two probabilities as

W(µ, ν) = sup
f(x)+g(y)≤C(x,y)

ˆ
f(x)dµ(x) +

ˆ
g(y)dν(y). (A.101)

For ζ ∈ [0, 1], write µ̃ = ζµ+ (1− ζ)δz a measure perturbed by a Dirac outlier. Write (f, g) the optimal
dual potentials of W(µ, ν), and y∗ a point in ν’s support. One has

W(µ̃, ν) ≥ ζ W(µ, ν) + (1− ζ)
(
||z − y∗||2 − g(y∗) +

ˆ
gdν

)
. (A.102)

In particular, with the notation L it reads

L(µ̃, ν) ≥ ζL(µ, ν) + (1− ζ)
(
C(z,y∗)− g(y∗) +

ˆ
gdβ

)
.

Proof. We consider a suboptimal pair (f̃ , g̃) of potentials for L(µ̃, ν). On the support of (µ, ν) we take
the optimal potentials pair (f, g) for (µ, ν), i.e. f̃ = f and g̃ = g. We need to extend f̃ at z. To do so we
take the c-transform of g, i.e.

f̃(z) = inf
y∈spt(ν)

||z − y||2 − g(y) = ||z − y∗||2 − g(y∗),

where the infimum is attained at some y∗ since ν has compact support. the pair (f̃ , g̃) is suboptimal, thus

L(µ̃, ν) ≥
ˆ
f̃(x)dµ̃(x) +

ˆ
g̃(y)dν(y),

≥ ζ
ˆ
f(x)dµ(x) + (1− ζ)f̃(z) +

ˆ
g̃(y),

≥ ζL(µ, ν) + (1− ζ)
[
||z − y∗||2 − g(y∗) +

ˆ
g(y)dν(y)

]
.

Hence the resulted given by Equation (A.102).

UOT properties

Now let us present results which will be useful for concentration bounds. A key element is to have a
bounded plan and a finite UOT cost in order to derive a Hoeffding-type bound. We start this appendix by
proving Lemma 9.2.1. We split it in two, Lemma 9.2.1.a proves that the UOT cost is finite and provides
an upper bound while Lemma 9.2.1.b proves that the UOT plans exist and belong to a compact set.

Lemma 9.2.1.a (Upper bounds). Let (a,b) be two positive vectors and assume that 〈ab>, C〉 < +∞, then
the UOT cost is finite. Furthermore, we have the following bound for h = OTτ,εφ , one has |h(a,b, C)| 6
Mh

a,b, where
Mh

a,b = Mmamb + τmaφ(mb) + τmbφ(ma). (A.103)

Regarding h = Sτ,εφ , one has |h(a,b, C)| 6MS
a,b, where

MS
a,b = 2Mmamb + τmaφ(mb) + τmbφ(ma) + τmaφ(ma) + τmbφ(mb) + ε

2(ma −mb)2. (A.104)
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Proof. As 〈ab>, C〉 < +∞ is finite, one can bound the ground cost C as 0 6 Ci,j 6M . Consider the OT
kernel h ∈ {OTτ,εφ } for any ε ≥ 0. Let us consider the transport plan Π = ab> = (aibj) (with respect to
the cost matrix C). Because all terms are positive, we have:

|h| 6 〈ab>, C〉+ εKL(ab>|ab>) + τDφ

(
(ab>)1n|a

)
+ τDφ

(
(ba>)1n|b

)
,

6M
∑
i,j

aibj + τmaφ(mb) + τmbφ(ma),

6Mmamb + τmaφ(mb) + τmbφ(ma). (A.105)

Defining Mh
a,b as the last upper bound finishes the proof. The case h = Sτ,εφ , is the sum of three terms of

the form OTτ,εφ Thus the sum Mh
a,b + 1

2M
h
a,a + 1

2M
h
b,b is an upper bound of Sε.

We now bound the UOT plan.

Lemma 9.2.1.b (locally compact optimal transport plan). Assume that 〈ab>, C〉 < +∞. Consider
regularized or unregularized UOT with entropy φ and penalty Dφ such that one has φ′∞ > 0. Then there
exists an open neigbhourhood U around C, and a compact set K, such that the set of optimal transport
plan for any C̃ ∈ U is in K, i.e., Opt(h, C̃,a,b) ⊂ K. Furthermore, if all costs are uniformly bounded
such that 0 ≤ C ≤M <∞, then the compact K can be taken global, i.e. independent of C.

Proof. We identify the mass of a positive measure with its L1 norm, i.e. ma =
∑

ai = ||a||1. We first
consider the case where 0 ≤ C ≤M <∞. The OT cost is finite because the plan π = ab> is suboptimal
and yields OTτ,εφ (a,b, C) ≤Mmamb + τmaφ(mb) + τmbφ(ma) < +∞.

Take a sequence Πt approaching the infimum. Note that thanks to the Jensen inequality, one has
Dφ(x,y) ≥ myφ(mx/my) (see [Liero 2017]). Write mΠ =

∑
Πt,ij . One has for any t

〈Πt, C〉+ τDφ(Πt,11n|a) + τDφ(Π>t,21n|b) + εKL(Πt|ab>),

≥ mΠ

[
minCij + τ

ma
mΠ

φ
(mΠ
ma

)
+ τ

mb
mΠ

φ
(mΠ
mb

)
+ ε

mamb
mΠ

φKL
( mΠ
mamb

)]
,

≥ mΠL(mΠ).

If ||Πt||1 = mΠ → +∞, then L(mΠ)→ +∞ if ε > 0 and L(mΠ)→ minCij + 2φ′∞ > 0 otherwise. In both
cases, as t→∞ and ||Πt||1 = mΠ → +∞, we are supposed to approach the infimum but its lower bound
goes to +∞, which contradicts the fact that the optimal OT cost is finite.

More precisely, there exists a large enough value M̃ such that for mΠ > M̃ , the lower bound is superior
to the upper bound Mmamb + τmaφ(mb) + τmbφ(ma) and thus necessarily not optimal. Furthermore,
M̃ depends on (ma,mb,M) since 0 ≤ C ≤M . Thus, there exists M̃ > 0 and some t0 such that for t ≥ t0
any plan approaching the optimum statisfies ||Πt||1 ≤ M̃ . The sequence (Πt)t is in a finite dimensional,
bounded, and closed set, i.e. a compact set. One can extract a converging subsequence whose limit is a
plan attaining the minimum. Thus any optimal plan is necessarily in a compact set.

To generalize to local compactness, we consider δ > 0 and a neighbourhood U of C such that for
any C̃ ∈ U one has 0 ≤ C̃ ≤ maxC + δ. Reusing the above proof yields the existence of M̃ such that
for any C̃ ∈ U , any plan approaching the optimum satisfies ||Πt||1 ≤ M̃ , but this time M̃ depends on
(ma,mb,maxC + δ), which is independent of C in its neighbourhood.

As each element Π of Opt(h,C,a,b) is bounded by a constant M , Opt(h,C,a,b) is a compact space
ofM+(X ). We denote the maximal constant M which bounds all elements of Opt(h,C,a,b) as MΠ. We
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now prove that the set of optimal transport plan is convex , which will be useful for the optimization
section.

Lemma A.2.1 (optimal transport plan convexity). Consider regularized or unregularized UOT with
entropy φ and penalty Dφ. The set of all optimal transport plans Opt(h,C,a,b) is a convex set.

Proof. It is a general property of convex analysis. Take a convex function f and two points (x,y) that
both attain the minimum over a convex set E. Write z = tx+ (1− t)y for t ∈ [0, 1]. By convexity and
suboptimality of z one has minE f ≤ f(z) ≤ tf(x) + (1− t)f(y) = minE f . Thus z is also optimal, hence
the set of minimizers is convex. The losses OTτ,εφ fall under this setting.

Finally, we provide a final result about UOT cost which is also useful for the optimization properties.

Lemma A.2.2 (UOT is Lipschitz in the cost C). The map C 7→ h(u,u, C) is locally Lipshitz. Furthermore,
if the costs are uniformly bounded (0 ≤ C ≤M) then the loss is globally Lipschitz.

Proof. We recall that h(u,u, C) = min
Π∈Rn×n+

F(Π, C). Let C1 and C2 be two ground costs. Let Π1 and Π2

be the optimal solutions of h(u,u, C1) and h(u,u, C2), i.e., h(u,u, C1) = F(Π1, C1). Then we have:

F(Π1, C1)−F(Π1, C2) ≤ h(u,u, C1)− h(u,u, C2) ≤ F(Π2, C1)−F(Π2, C2). (A.106)

Thus we have

h(u,u, C1)− h(u,u, C2) ≤ F(Π2, C1)−F(Π2, C2),
= 〈Π2, C1 − C2〉, (A.107)
≤ ‖Π2‖‖C1 − C2‖. (A.108)

Where the last inequality uses the Cauchy-Schwarz inequality. Following the same logic we get a bound
for minus the left hand term

h(u,u, C2)− h(u,u, C1) ≤ F(Π1, C2)−F(Π1, C1) ≤ ‖Π1‖‖C1 − C2‖. (A.109)

It remains to bound ‖Πi‖. When we study the local Lipschitz property, without loss of generality, we fix
C1 and take C2 in a local neighbourhood of C1. Thus Lemma 9.2.1.b, gives that ‖Πi‖ ≤ M̃ , where M̃ only
depends on (φ, τ, ε,a,b,maxC), with a = b = u, i.e. it is locally independant of C in its neighbourhood,
hence the local Lipschitz property. When 0 ≤ C ≤ M , then M̃ is independent of the cost, hence the
bound is global and the map is globally Lipschitz.

A.2.3 Statistical and optimization proofs

We consider a positive, symmetric, definite and C1 ground cost and without loss of generality, we consider
our ground cost to be the squared Euclidean distance. We recall our definitions and hypotheses. As
the distributions α and β are compactly supported, there exists a constant M > 0 such that for any
1 6 i, j 6 n, c(xi,yj) 6M with M := diam(Supp(α) ∪ Supp(β))2. We also furthermore suppose that the
input masses ma and mb of positive vectors are strictly positive and finite, i.e., 0 < ma < ∞. These
hypotheses assure us that the UOT cost is finite and that the UOT plan is bounded.
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Proof of Theorem 9.2.1

We now give the details of the proof of Theorem 9.2.1. We separate Theorem 9.2.1 in two sub theorems:
Theorem 9.2.1.a and Theorem 9.2.1.b. In the Theorem 9.2.1.a, we show the deviation bound between h̃m,k

and Eh and in Theorem 9.2.1.b, we show the deviation bound between Π̃h,m,k and Πh,m. For Theorem
9.2.1.a, we rely on two lemmas. The first lemma bounds the deviation between the complete estimator
h
m and its expectation Eh. We denote the floor function as bxc which returns the biggest integer smaller

than x.

Lemma A.2.3 (U-statistics concentration bound). Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be
fixed, and two compactly supported distributions α, β. Consider two n-tuples X ∼ α⊗n and Y ∼ β⊗n and
a kernel h ∈ {OTτ,εφ , Sτ,εφ } with the squared Euclidean distance as ground cost. We have a concentration
bound between hm(X,Y ) and the expectation over minibatches Eh depending on the number of empirical
data n:

|hm(X,Y )− Eh| ≤Mh
u,u

√
log(2/δ)
2bn/mc , (A.110)

with probability at least 1− δ and where Mh
u,u is an upper bound defined in Lemma 9.2.1.a.

Proof. hm(X,Y ) is a two-sample U-statistic of order 2m and Eh is its expectation as X and Y are i.i.d.
random variables. hm(X,Y ) is a sum of dependant variables and it is possible to rewrite hm(X,Y ) as
a sum of independent random variables. As α, β are compactly supported by hypothesis, the UOT loss
is bounded thanks to Lemma 9.2.1.a. Thus, we can apply Theorem 7.3.2 to our U-statistic and get the
claimed bound.

The second lemma bounds the deviation between the incomplete estimator h̃m,k and the complete
estimator hm.

Lemma A.2.4 (Deviation bound). Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be fixed, and two
compactly supported distributions α, β. Consider two n-tuples X ∼ α⊗n and Y ∼ β⊗n and a kernel
h ∈ {OTτ,εφ , Sτ,εφ } with the squared Euclidean distance as ground cost. We have a deviation bound between
h̃m,k(X,Y ) and hm(X,Y ) depending on the number of batches k:

|h̃m,k(X,Y )− hm(X,Y )| 6Mh
u,u

√
2 log(2/δ)

k
, (A.111)

with probability at least 1− δ and where Mh
u,u is an upper bound defined in Lemma 9.2.1.a.

Proof. First note that h̃m,k(X,Y ) is a subsample quantity of hm(X,Y ). Let us consider the sequence of
random variables ((bl(I, J)(I,J)∈Pm)16l6k such that bl(I, J) is equal to 1 if (I, J) has been selected at the
l−th draw and 0 otherwise. By construction of h̃m,k, the aforementioned sequence is an i.i.d sequence of
random vectors and the bl(I, J) are Bernoulli random variables of parameter 1/|Γ|. We then have

h̃m,k(X,Y )− hm(X,Y ) = 1
k

k∑
l=1

ωl, (A.112)

where ωl =
∑

(I,J)∈Pm(bl(I, J)− 1
|Γ| )h(I, J). Conditioned upon X = (x1, · · · ,xn) and Y = (y1, · · · ,yn),

the variables ωl are independent, centered and bounded by 2Mh
u,u thanks to Lemma 9.2.1.a. Using
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Hoeffding’s inequality yields

P(|h̃m,k(X,Y )− hm(X,Y )| > ε) = E[P(|h̃m,k(X,Y )− hm(X,Y )| > ε|X,Y )], (A.113)

= E[P(|1
k

k∑
l=1

ωl)| > ε|X,Y )], (A.114)

6 E[2e
−kε2

2(Mhu,u)2 ] = 2e
−kε2

2(Mhu,u)2 , (A.115)

which concludes the proof.

We are now ready to prove Theorem 9.2.1.a.

Theorem 9.2.1.a (Maximal deviation bound). Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be fixed
and two compactly supported distributions α, β. Consider two n-tuples X ∼ α⊗n and Y ∼ β⊗n and a
kernel h ∈ {OTτ,εφ , Sτ,εφ } with the squared Euclidean distance as ground cost. We have a maximal deviation
bound between h̃m,k(X,Y ) and the expectation over minibatches Eh depending on the number of empirical
data n and the number of batches k

|h̃m,k(X,Y )− Eh| ≤Mh
u,u

√
log(2/δ)
2bn/mc +Mh

u,u

√
2 log(2/δ)

k
, (A.116)

with probability at least 1 - δ and where Mh
u,u is an upper bound defined in Lemma 9.2.1.a.

Proof. Thanks to Lemma A.2.4 and A.2.3 we get

|h̃m,k(X,Y )− Eh| ≤ |h̃m,k(X,Y )− hm(X,Y )|+ |hm(X,Y )− Eh|, (A.117)

≤Mh
u,u

√
log(2/δ)
2bn/mc +Mh

u,u

√
2 log(2/δ)

k
, (A.118)

with probability at least 1− ( δ2 + δ
2 ) = 1− δ.

We now give the details of the proof of Theorem 9.2.1.b. In what follows, we denote by Π(i) the i-th
row of matrix Π. Let us denote by 1 ∈ Rn the vector whose entries are all equal to 1.

Theorem 9.2.1.b (Distance to marginals). Let δ ∈ (0, 1), two integers m ≤ n be fixed. Consider two
n-tuples X ∼ α⊗n and Y ∼ β⊗n and the kernel h = OTτ,εφ with the squared Euclidean distance as ground
cost. For all integer k ≥ 1, all 1 6 i 6 n, with probability at least 1− δ on the draw of X,Y and Dk we
have

|Π̃h,m,k(X,Y )(i)1−Πh,m(X,Y )(i)1| 6 M∞Π

√
2 log(2/δ)

k
, (A.119)

where M∞Π denotes an upper bound of all minibatch UOT plan.

Proof. Let us consider the sequence of random variables ((bp(I, J)(I,J)∈Γ)16p6k such that bp(I, J) is equal
to 1 if (I, J) has been selected at the p−th draw and 0 otherwise. By construction of Π̃h,m,k(X,Y ), the
aforementioned sequence is an i.i.d sequence of random vectors and the bp(I, J) are bernoulli random
variables of parameter 1/|Γ|. We then have:

Π̃h,m,k(X,Y )(i)1 = 1
k

k∑
p=1

ωp, (A.120)
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where ωp =
∑

(I,J)∈Γ
∑n
j=1(ΠI,J )i,jbp(I, J). Conditioned upon X = (x1, · · · ,xn) and Y = (y1, · · · ,yn),

the random vectors ωp are independent, and thanks to Lemma 9.2.1.b, they are bounded by a constant MΠ

which is the maximum mass of all optimal minibatch unbalanced plan in Opt(h,C(X(I),Y (J)),um,um).
We denote the maximum upper bound MΠ of all minibatch UOT plan as M∞Π . Moreover, one can observe
that E[Π̃h,m,k(X,Y )(i)1] = Πh,m(X,Y )(i)1. Using Hoeffding’s inequality yields

P(|Π̃h,m,k(X,Y )(i)1−Πh,m(X,Y )(i)1)| > ε) = E[P(|1
k

k∑
p=1

ωp − E[ 1
k

k∑
p=1

ωp])| > ε|X,Y )], (A.121)

6 2e
−2 kε2

(M∞Π )2 , (A.122)

which concludes the proof.

Note that the unbalanced Sinkhorn divergence Sτ,εφ involves three terms of the form OTτ,εφ , hence
three transport plans, which explains why we do not attempt to define an associated averaged minibatch
transport matrix.

Proof of Theorem 9.2.2

To prove the exchange of gradients and expectations over minibatches we rely on Clarke differential. We
need to use this non-smooth analysis tool as unregularized UOT is not differentiable. It is not differentiable
because the set of optimal solutions might not be a singleton. Clarke differential are generalized gradients
for locally Lipschitz function and non necessarily convex. A similar strategy was developed in Section A.1.
The key element of this appendix is to rewrite the original UOT problem OTτ,εφ as:

OTτ,εφ (a,b, C) = min
Π∈Rn×n+

〈C,Π〉+ εKL(Π|a ⊗ b) + τDφ(Π1n|a) + τDφ(Π>1n|b), (A.123)

= min
Π∈Opt(OTτ,ε

φ
,C,a,b)

〈C,Π〉+ εKL(Π|a ⊗ b) + τDφ(Π1n|a) + τDφ(Π>1n|b), (A.124)

Where Opt(OTτ,εφ , C,a,b) is a compact set of the set of measures M+(X ). The compact set is a key
element for using Danskin like theorem (Proposition B.25 [Bertsekas 1997]).

We start by recalling a basic proposition for Clarke regular function:

Proposition 18. A C1 or convex map is Clarke regular.

Proof. see Proposition 2.3.6 [Clarke 1990]

We first give a lemma which gives the Clarke regularity of the UOT cost with respect to a parametrized
random vector.

Lemma A.2.5. Let u be a uniform probability vector. Let X be a Rdm-valued random variable, and
{Yθ} a family of Rdm-valued random variables defined on the same probability space, indexed by θ ∈ Θ,
where Θ ⊂ Rq is open. Assume that θ 7→ Yθ is C1. Consider a C1 cost C and let h ∈ {OTτ,εφ , Sτ,εφ }. Then
the function θ 7→ −h(u,u, C(X,Yθ)) is Clarke regular. Furthermore, for h = OTτ,εφ and for all 1 ≤ i ≤ q
we have:

∂θih(u,u, C(X,Yθ)) = co{−〈Π ·D〉 · (∇θiY ) :Π ∈ Opt(h,C(X,Y ),u,u), (A.125)
D ∈ Rm,m, Dj,k = ∇Y Cj,k(X,Yθ)},



A.2. Proofs of Chapter 9 185

where ∂θi is the Clarke subdifferential with respect to θi, ∇Y Cj,k is the differential of the cell Cj,k of the
cost matrix with respect to Y , Opt(h,C(X,Yθ),u,u) is the set of optimal transport plan and co denotes
the closed convex hull. Note that when ε > 0 the set Opt(h,C(X,Yθ),u,u) is reduced to a singleton, and
the notation co is superfluous.

Proof. We start with the regularity of θ 7→ −OTτ,εφ (u,u, C(X,Yθ)). To prove the Clarke regularity of
this map, we rely on a chain rule argument. Consider the function Y 7→ Cj,k(X,Y ), it is Clarke regular
because it is C1. Since θ 7→ Yθ is C1, it follows by the chain rule that θ 7→ Cj,k(X,Yθ) is C1 and thus
Clarke regular. The Unbalanced OT cost OTτ,εφ is a minimization of an energy which is linear in C, and
it is thus concave in C, hence −OTτ,εφ is Clarke regular by convexity. Therefore from Theorem 2.3.9(i)
and Proposition 2.3.1 (for s = 1) in [Clarke 1990] it follows that θ 7→ −OTτ,εφ (u,u, C(X,Yθ)) is Clarke
regular.

We now furnish the gradients associated to θ 7→ −OTτ,εφ (u,u, C(X,Yθ)). By chain rule, the gradient
of θ 7→ Cj,k(X,Yθ) reads

∇θiCj,k(X,Yθ) = ∇Y Cj,k(X,Yθ) · ∇θiYθ.

We now deal with the gradient of the map C 7→ OTτ,εφ (u,u, C) by verifying the assumptions of Danskin’s
theorem [Clarke 1975, Theorem 2.1]. We use in particular the remark below [Clarke 1975, Theorem 2.1]
which states that the hypothesis on the map are verified if the map is u.s.c in both variables (Π, C) and
convex in C. We recall that Opt(h,C(X,Y ),u,u) is a compact and a convex set, thanks to Lemma A.2.1
and Lemma A.2.2. Furthermore, the energy associated to h = OTτ,εφ is concave in the cost C and l.s.c in
(Π, C) [Liero 2017, Lemma 3.9]. From [Clarke 1975, Theorem 2.1] it follows that the subderivatives of the
convex function C 7→ −h(u,u, C) are equal to Opt(h,C(X,Y ),u,u), due to the energy’s linearity in C.
Thus combining the formulas of the Danskin theorem with the Chain rule yields Equation (A.125). When
ε > 0 the set Opt(h,C(X,Yθ),u,u) is reduced to a singleton, and the notation co is superfluous.

We now give the proof for the regularity of the map θ 7→ Sτ,εφ (u,u, C(X,Yθ)) with ε > 0 as when
ε = 0, we get the unregularized UOT treated in the above paragraph. We recall that Sτ,εφ is the
summation of three terms of the form OTτ,εφ . For ε > 0 and each term of the sum, the set of optimal
plans Opt(OTτ,εφ , C(X,Y ),u,u) is reduced to a unique element and the differential (A.125) is also a
singleton, thus OTτ,εφ is differentiable. Then Sτ,εφ is differentiable as a difference of differentiable functions.
Furthermore Sτ,εφ is also Clarke regular as a difference of differentiable functions.

We finally prove Theorem 9.2.2.

Theorem 9.2.2. Let u be a uniform probability vector and let X,Y , C be as in Lemma A.2.5, h ∈
{OTτ,εφ , Sτ,εφ }, and assume in addition that the random variables X, {Yθ}θ∈Θ are compactly supported. If
for all θ ∈ Θ there exists an open neighbourhood U , θ ∈ U ⊂ Θ, and a random variable KU : Ω→ R with
finite expected value, such that

‖C(X(ω),Yθ1(ω))− C(X(ω),Yθ2(ω))‖ ≤ KU (ω)‖θ1 − θ2‖, (A.126)

then we have

∂θE [h(u,u, C(X,Yθ))] = E [∂θh(u,u, C(X,Yθ))] . (A.127)

with both expectation being finite. Furthermore the function θ 7→ −E [h(u,u, C(X,Yθ))] is also Clarke
regular.
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Proof. Suppose that U ⊂ Θ is open and KU is a function for which (A.126) is satisfied. As data lie
in compacts the ground cost C, which is C1, is in a compact KC and as the map C 7→ h(u,u, C) is
locally Lipshitz by Lemma A.2.2, there exists a uniform constant which makes the map C 7→ h(u,u, C)
globally Lipshitz on the compact KC . Thus, a similar bound to (A.126) is also satisfied for the function
h(u,u, C(X(ω),Yθ(ω))). Thanks to Lemma A.2.5, −h(u,u, C(X,Yθ)) is Clarke regular, the interchange
(A.127) and regularity of θ 7→ −E[h(u,u, C(X,Yθ))] will follow from Theorem 2.7.2 and Remark 2.3.5
[Clarke 1990], once we establish that the expectation on the left hand side is finite. This is direct as we
suppose we have compactly supported distributions and C is a C1 cost. Indeed consider the function
which is equal to Mh

u,u on the distributions’s support and which is set to 0 everywhere else. Taking the
expectation on this function is finite as Mh

u,u is finite.
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Titre : Transport optimal et apprentissage profond : apprendre l’un de l’autre

Mot clés : Transport Optimal, Sous-lots, labels corrompus, Réseaux adversaires génératifs

Résumé : Les modèles d’apprentissage pro-
fond sont des réseaux de neurones artificiels
et sont très compétitifs dans le cadre de pro-
blèmes décisionnels. En classification, ces ré-
seaux permettent par exemple une représen-
tation plus complexe des données et donc des
décisions plus pertinentes elles aussi. Cepen-
dant, l’essor de ces réseaux est aussi lié au
développement de plusieurs champs des ma-
thématiques : cette thèse porte sur l’interac-
tion des réseaux de neurones avec l’un de ces
champs appelé Transport Optimal (TO).

Le TO est en particulier adapté à la mesure
de distance entre distributions de probabilité,
en calculant le coût minimal pour déplacer une
distribution vers une autre. Sa force consiste
en l’utilisation de la géométrie des espaces de

probabilité grâce aux différents coûts.
Cette thèse explore les deux faces de l’in-

teraction entre transport optimal et apprentis-
sage profond. D’abord, nous travaillerons sur
comment le TO peut définir des fonctions de
coût pertinentes pour les réseaux de neu-
rones. Nous nous concentrerons sur la défini-
tion d’une régularisation basée sur le TO pour
l’apprentissage en présence de labels corrom-
pus et sur l’utilisation du TO pour la génération
de données mal classifiées pour un réseau
pré-entrainé. Nous étudierons ensuite le TO
au travers de son utilisation dans l’apprentis-
sage profond avec un focus particulier sur l’uti-
lisation de sous lots. Nous analyserons alors
les gains et pertes tant théoriques que pra-
tiques de cette méthode.

Title: Optimal Transport and Deep Learning : Learning from one another

Keywords: Optimal Transport, Minibatch, Noisy Labels, Generative Adversarial Network

Abstract: Deep learning (DL) models are ar-
tificial neural networks and they have arisen as
the current most competitive method to make
data-driven decisions. In classification, these
networks have a more complex representation
of data and thus they make more complex pre-
dictions. However, DL’s recent successes are
also due to the development of some mathe-
matical fields : this thesis is about studying the
different interactions of DL with one of these
fields called Optimal Transport (OT).

To measure the distance between proba-
bility distributions, one can rely on the OT the-
ory. It defines a measure through the minimal
displacement cost of a distribution to another.
Its strength is to use the space geometry with

a given ground cost on the data space. Several
DL methods are built upon this theory.

This thesis proposes to explore two faces
of the interaction between OT and DL. We will
first focus on how OT can define meaningful
cost functions for neural networks. We will fo-
cus on how to define an OT based regulariza-
tion for learning with noisy labels and how we
can use OT to generate misclassified data for
a pre-trained classifier. We will then explore
what can be learnt about OT from DL appli-
cations, with a focus on the minibatch approx-
imation of OT. We will answer what are the
gains and downsides of the minibatch formu-
lation both in theory and practice.
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