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Introduction on deep learning and optimal transport
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• Introduction on deep learning

• Neural networks

• Applications

• Probability distributions

• Introduction on optimal

transport

• Definitions

• Properties

• Entropic variant
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Neural network illustration

Deep learning is a tool to estimate non-linear complex functions

• Neural networks: many stacked layers and each layer is made of

neurons

• Parameters of neural networks: connections between layers

• Different layers: convolutional layers, fully connected layers, ...
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Motivating example: Classification

Classification problem: predicting the class of a given image
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Motivating example: Classification

• Find a function fθ which describes the relationship between the

space of images and the space of classes

• fθ is a neural network !

fθ




 0.1 clown fish

= 0.2 grouper

0.7 turtle

• n training samples: (x1,y1), · · · , (xn,yn)

• Goal: minimizing the empirical risk with respect to θ

minθ R(fθ) = minθ
1

N

N∑
i=1

L(yi, fθ(xi))
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Motivating example: Domain adaptation

Domain adaptation (DA) setting

• Two domains with same classes, only one with labels

• Goal: classify unlabeled target data with source labeled data

• xsi ,x
t
j have same class → gφ(xi) ≈ gφ(xj) and yi = fθ(gφ(xj)))
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Motivating example: Generative adversarial networks

Goal: generating new images

• Generative adversarial networks (GANs) developed in

[Goodfellow et al., 2014]

• Gθ tries to fool Dφ

• Dφ tries to predict if an image is real or not
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Motivating example: Generative adversarial networks

Goal: generating new images

• α ∈ P(X ), ζ ∈ P(Z) are probability distributions

• Loss: minθ maxφ Ex∼α log
(
Dφ(x)

)
− Ez∼ζ log

(
1−Dφ(Gθ(z))

)
The loss can be reformulated with a Jensen-Shannon divergence

between generated and training distributions
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Training samples as distributions paradigm

Applications use probability distributions to train neural networks

• Classification: function L takes probability vectors as inputs

• Domain adaptation: align embedding probability distributions

from domains

• GANs: distance between generated and training distributions

θ̂ = arg min
θ∈Θ

L(αn, βθ)

Goal : Find a suitable function L between probability distributions

7 / 63



Comparing probability distributions

(x)

8 / 63



Comparing probability distributions

(x)

(x)

ϕ-divergences compare mass ratio point-wise α(x)/β(x) (β(x) > 0)

Lϕ(α|β) =

∫
X
ϕ

(
dα

dβ

)
dβ
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Comparing probability distributions

(x)

(x)

ϕ-divergences compare mass ratio point-wise α(x)/β(x) (β(x) > 0)

Lϕ(α|β) =

∫
X
ϕ

(
dα

dβ

)
dβ

• ϕ-divergences cannot compare Diracs

→ fail to capture the geometry

• KL(α|βt) = +∞
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Comparing probability distributions

(x)

(x)

ϕ-divergences compare mass ratio point-wise α(x)/β(x) (β(x) > 0)

Lϕ(α|β) =

∫
X
ϕ

(
dα

dβ

)
dβ

• ϕ-divergences cannot compare Diracs

→ fail to capture the geometry

• KL(α|βt) = +∞ but KL(α|β∞) = 0
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Optimal Transport definition

Ingredients

• Probability distributions α ∈ P(X ) and β ∈ P(Y)

• A ground cost c : X × Y → R+ with X and Y metric spaces
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Optimal Transport definition

Ingredients

• Probability distributions α ∈ P(X ) and β ∈ P(Y)

• A ground cost c : X × Y → R+ with X and Y metric spaces
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Optimal Transport definition

Definition (Kantorovich problem [Kantorovich, 1942])

min
π∈U(α,β)

∫
X×Y

c(x,y)dπ(x,y)

with : U(α, β) = {π ∈ P(X ×Y),

∫
Y
π(x,y)dy = α,

∫
X
π(x,y)dx = β}
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Discrete Optimal Transport

Discrete ingredients

• Discrete distributions α =
∑n
i=1 aiδxi and β =

∑n
j=1 bjδyj

• Cost matrix C = C(X,Y ), such that Ci,j = c(xi,yj)
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Discrete Optimal Transport

For discrete distributions, OT becomes a linear program:

Definition (Discrete Optimal Transport)

OT(α, β, C) = min
Π∈U(α,β)

∑
i,j

Πi,jCi,j

U(α, β) =
{

Π ∈
(
R+
)n×n |Π1n = a,ΠT1n = b

}
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Wasserstein distance

Some properties

• Leverages geometry of sample spaces through C

• A solution always exists (ex. π = α⊗ β)

• 〈Π, C〉F is linear in the transport plan and in the cost

• Computational complexity of discrete OT is O(n3log(n))

Definition (Wasserstein distance)

C is a ground metric, then OT cost Wp is a metric for p ≥ 1 and where

Wp(α, β, C
p) =

(
min

Π∈U(α,β)
〈Π, Cp〉F

)1/p

Proposition (Kantorovich–Rubinstein duality)

W1(α, β, C) = supf∈Lip1(X ) Ex∼α[f(x)]− Ez∼β [f(z)]
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Entropic Optimal Transport

Definition (Entropic Optimal Transport [Cuturi, 2013])

OTε(α, β, C) = min
Π∈U(α,β)

∑
i,j

Πi,jCi,j + εKL(Π|α⊗ β)

∀x,y ∈ Rn+,KL(x|y) =
∑
i

xi log
(xi
yi

)
− xi + yi

• Functional is strongly convex in the transport plan

• Computational complexity of entropic OT is O
(

n2

ε

)
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Summary on neural networks and optimal transport
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• Summary on neural networks

• Neural networks are stacked layers

of neurons

• Competitive methods on

classification, domain adaptation

and GANs

• Summary on optimal transport

+ Loss function/distance between

distributions of samples

+ Leverages geometry of sample

spaces through C

- Cubical computational complexity

of discrete OT

+/- Faster and easy computable

entropic variant
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Table of contributions

• Optimal transport as a loss

function in deep learning

Geometry on label distributions ← Optimal transport adversarial

regularization for noisy labels

Geometry on sample distributions ← Optimal transport loss function

to generate misclassified data

• Minibatch optimal transport

• Minibatch optimal transport

formalism

• Unbalanced minibatch optimal

transport
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Wasserstein Adversarial Regularization for noisy labels

• Label noise: label does not correspond to the image class

• Occurs in real-world dataset → neural networks overfitting

[Zhang et al., 2017].

• Enforce uniformity prediction around the vicinity of samples

• Use optimal transport in the regularization
17 / 63



Robust optimization illustration

Robust optimization:

argminθ

n∑
i=1

max
xui ∈Bρ(xi)

LCE(fθ(x
u
i ),yi) (1)

• Intuition: noisy labels mitigated by uniform prediction

• Cannot rely on labels → use prediction
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Virtual adversarial training

VAT’s loss function [Miyato et al., 2018]:

LVAT((X,Y ), fθ) =
1

n

n∑
i=1

L(yi, fθ(xi))︸ ︷︷ ︸
Supervised loss

+βKL(f̂θ(xi), fθ(xi + ri))︸ ︷︷ ︸
regularization term

where ri = argmax
r,‖r‖≤ρ

KL(f̂θ(xi), fθ(xi + r))
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Encoding class similarities

• KL divergence penalizes errors between classes in the same

manner

• Replace KL divergence by optimal transport
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Wasserstein adversarial regularization

The WAR loss function is:

LWAR((X,Y ), fθ) =
1

n

n∑
i=1

L(yi, fθ(xi))︸ ︷︷ ︸
Supervised loss

+βOTεC(f̂θ(xi), fθ(xi + ri))︸ ︷︷ ︸
regularization term

where ri = argmax
r,‖r‖≤ρ

OTεC(f̂θ(xi), fθ(xi + r))

For the ground cost C, we want:

• High cost between close classes to get complex boundaries

• Small cost between non-similar classes to get smooth boundaries

The OT cost between labels was also studied in [Frogner et al., 2015]
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Learning with WAR

C=

 0 1 1

1 0 5

1 5 0

• Regularization geometry for different adversarial regularizations

• (Top) Regularization values on the simplex of class probabilities

• (Down) Classification boundaries for different methods
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Experiments

• Test accuracy (%) on Fashion-MNIST, CIFAR-10, and

CIFAR-100 datasets

• Varying noise rates (20% and 40%)

Dataset / noise CCE Bootsoft CoTeaching VAT WARC

F-MNIST
20% 89.02±0.47 88.17±0.11 91.24±0.06 93.10±0.14 93.37±0.08

40% 78.85±0.56 73.84±0.28 86.83±0.10 89.74±0.10 90.41±0.02

CIFAR-10
20% 85.26±0.09 85.35 ± 0.8 86.19 ±0.07 88.91±0.09 89.12±0.48

40% 76.23±0.15 74.32 ± 0.2 80.87±0.09 81.98±0.25 84.55±0.78

CIFAR-100
20% 58.81±0.10 58.97±0.08 60.90±0.03 65.44±0.11 62.72±0.16

40% 42.45±0.12 41.73±0.08 42.73±0.08 55.75±0.14 58.86±0.21
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Summary on Wasserstein Adversarial Regularization

• Noisy labels are corrupted

labels and hurt the

performances of neural

networks

• Promoting uniform

classification around inputs

mitigate their influence

• Integrate optimal transport to

control the uniform

classification

Published in [Fatras et al., 2021a]
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Generating misclassified data

• Attack the classifier

• Introduction on misclassified

examples

• How OT can be used to

generate data

• Generating misclassified

examples with just the output

of the classifier

25 / 63



Generating misclassified data

Our objective is to generate samples from the gray class which are

classified as blue data

• Generate adversarial examples

• Most adversarial examples generation uses classifier architecture

• Some methods hurt quality of adversarial images
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Generating data with Wasserstein GAN

To generate data, we use the Wasserstein Generative Adversarial

Networks (WGAN) [Arjovsky et al., 2017]

We use the Kantorovich-Rubinstein duality theorem and we minimize:

min
θ
W1(α,Gθ#ζ) = min

θ
max
φ

Ex∼α[Dφ(x)]− Ez∼ζ [Dφ(Gθ(z))]

→ Dφ needs to be 1-Lipschitz
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Defining a new distribution

Create a new distribution which gives bigger weights to misclassified

data, 1
n

∑n
i=1 δxi →

∑n
i=1 aiδxi ,

∑n
i=1 ai = 1

• Hard weighting (only consider misclassified samples)

• Soft weighting (weight depends on how much the sample is

misclassified)
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Generating misclassified data

• Fool classifiers on hyperspectral images

• Transfer misclassified examples to unseen classifiers

• Can modify images to fool classifier

• Can fool state of the art detector Yolo V3
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Summary on ARWGAN

• Attacked the classifier

• Used WGAN to generate samples

• Created new empirical distributions

• Applied on remote sensing data

Published in [Burnel et al., 2021, Burnel et al., 2020]
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Table of contributions

• Optimal transport as a loss

function in deep learning

Geometry on label distributions ← Optimal transport adversarial

regularization for noisy labels

Geometry on sample distributions ← Optimal transport loss function

to generate misclassified data

• Minibatch optimal transport

• Minibatch optimal transport

formalism

• Unbalanced minibatch optimal

transport
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Minibatch optimal transport

• Minibatch optimal transport formalism

• Loss properties

• Statistical and optimization properties
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Time experiment

Optimal transport can be computed between a lot of samples

depending on the application

102 103 104

Number of samples (n)

10 3

10 2

10 1

100

101

Ti
m

e 
(s

)

Time for different OT solvers
emd time
sinkhorn time, = 0.01
sinkhorn time, = 0.1
sinkhorn time, = 1

OT between 2D distributions
Source samples
Target samples

Limits

Can not be used in Big Data scenario !
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Minibatch Optimal Transport definition

Let m ≤ n, [Damodaran et al., 2018, Genevay et al., 2018] compute

optimal transport between minibatch (MBOT) of distributions

Minibatch strategy

• Select m samples without replacement at random in domains

• Compute OT between the minibatches

• Average several MBOT terms → complexity O(m3)
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Minibatch Optimal Transport definition

Expectation of minibatches

Computing OT kernel h between minibatches estimates:

Eh(α, β, C) := E(X,Y )∼α⊗m⊗β⊗m [h(µm, µm, C(X,Y ))]

can be any OT variants h (Gromov-Wasserstein distance, Sliced

Wasserstein distance, ...)
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Estimate minibatch OT distance

Definition (Complete minibatch estimator)

h
m

(X,Y ) :=

(
n

m

)−2 ∑
I,J∈Pm

h(µm, µm, CI,J)

Πm(X,Y ) :=

(
n

m

)−2 ∑
I,J∈Pm

ΠI,J

• where Pm is the set of all m-tuples without replacement

• Πm(X,Y ) is an admissible transport plan between the input

probability distributions Π ∈ U(µn, µn)

Definition (Incomplete minibatch estimator)

h̃mk (X,Y ) := k−1
∑

(I,J)∈Dk

h(µm, µm, CI,J)

where k > 0 is an integer and Dk is a set of cardinality k whose elements

are minibatches drawn at random
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1D OT closed-form

1D distributions
Source samples
Target samples

1D closed-form

• Sorted 1D data with uniform weights

• Optimal Transport plan is the identity scaled by a uniform weight
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1D OT closed-form

1D OT close form solution

Source samples
Target samples

0 2 4 6 8

0

2

4

6

8

1D OT close form transport plan

0.00

0.02

0.04

0.06

0.08

0.10

1D closed-form

• Sorted 1D data with uniform weights

• Optimal Transport plan is the identity scaled by a uniform weight
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1D Minibatch Optimal Transport closed-form

πj,k =
1

m

(
n

m

)−2 imax∑
i=imin

(
j − 1

i− 1

)(
k − 1

i− 1

)(
n− j
m− i

)(
n− k
m− i

)
where imin = max(0,m− n+ j,m− n+ k) and imax = min(j, k)
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2D Minibatch Optimal Transport

MBOT on a toy example

• 2 balanced classes in the source and target domains

• Classes are in different clusters
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Estimator properties

Proposition

We have the following properties:

• h
m

, h̃mk are unbiased estimators of Eh

• Strictly positive loss: h(α, α) > 0

Difference with OT

• " Minibatch OT is not a metric!

• OT empirical estimator is a biased estimator of OT between

continuous measures (Eαn,βnW (αn, βn) 6= W (α, β))

[Bellemare et al., 2017]

From now on, we suppose that α and β compactly supported and the

cost c is at least continuous on X and Y
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Deviation bounds

How far is our incomplete estimator h̃mk to the expectation over

minibatches Eh?

Theorem (Maximal deviation bound)

Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be fixed. Consider two

n-tuples X ∼ α⊗n and Y ∼ β⊗n. With probability at least 1− δ on the

draw of X,Y and Dk we have:

|h̃mk (X,Y )− Eh| ≤M

√ log( 2
δ )

2b nmc
+

√
2 log(2

δ )

k

 , (2)

where M is an OT upper bound

41 / 63



Data fitting problem

Let discrete samples (xi)
n
i=1 ∈ Rd and their empirical distribution αn

Goal: to fit a parametric model θ 7→ βθ ∈M+
1 (Rd) to αn using OT

θ̂ = arg min
θ∈Θ

OTc(αn, βθ)

It is known as Minimum Wasserstein estimator

Parameters are updated as θt+1 = θt + ηlr∇θ OTc(αn, βθ)
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Data fitting problem

Let discrete samples (xi)
n
i=1 ∈ Rd and their empirical distribution αn

Goal: to fit a parametric model θ 7→ βθ ∈M+
1 (Rd) to αn using OT

θ̂ = arg min
θ∈Θ

h̃mk (αn, βθ)

Replace Wasserstein distance by minibatch OT to use SGD

Parameters are updated as θt+1 = θt + ηlr∇θh̃mk (αn, βθ)

Minimum Wasserstein estimator

Wasserstein estimator

Minimum MB Wasserstein estimator

minibatch Wasserstein estimator
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Data fitting problem

Let discrete samples (xi)
n
i=1 ∈ Rd and their empirical distribution αn

Goal: to fit a parametric model θ 7→ βθ ∈M+
1 (Rd) to αn using OT

θ̂ = arg min
θ∈Θ

h̃mk (αn, βθ)

We replace the Wasserstein distance by minibatch OT to use SGD

Parameters are updated as θt+1 = θt + ηlr∇θh̃mk (αn, βθ)

Does minimizing this expectation with SGD converge

towards the right minimum ?

• h
m
, h̃mk are unbiased estimators of Eh

• Can we exchange gradients and expectations?
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Exchange gradient and expectation

Consider Clarke generalized gradients (defined for locally Lipschitz

functions [Clarke, 1990])

Theorem

Let X̂, {Ŷθ}θ∈Θ be two m-tuples of random vectors compactly

supported and Cm a C1 cost. Under an additional integrability

assumption, we have:

∂θ E[h(µm, µm, C
m(X̂, Ŷθ))] = E[∂θh(µm, µm, C

m(X̂, Ŷθ))],

with both expectation being finite. Furthermore the function

θ 7→ −E[h(µm, µm, C
m(X̂, Ŷθ))] is also Clarke regular.

→ SGD converges almost surely [Davis et al., 2020]
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Summary on minibatch optimal transport

• Minibatch optimal transport formalism

• MBOT is a transport problem but not a distance

• Good statistical and optimization properties

Published in [Fatras et al., 2020b, Fatras et al., 2020a] and submitted

in [Fatras et al., 2021c]
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Unbalanced minibatch optimal transport

OT plan
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• Limits of MBOT

• Unbalanced minibatch OT

• Domain adaptation

experiments
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Limits of Minibatch Optimal Transport

Limits of minibatch OT

" Minibatches and marginal constraints create connections between

classes !
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Limits of Minibatch Optimal Transport

This is due to

• the sampling effect

• the marginal constraints

These force users to use large minibatch size [Damodaran et al., 2018]
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Unbalanced Optimal Transport

Definition

Unbalanced optimal transport (UOT) measures the OT cost between

probability distributions with relaxed marginals

UOTτ,ε(α, β, c) = min
π∈M+(X×Y)

∫
cdπ + εKL(π|α⊗ β)

+τ(KL(π1‖α) + KL(π2‖β)),

where π is the transport plan, π1 and π2 the plan’s marginals, τ ≥ 0

is the marginal penalization and ε ≥ 0 is the regularization coefficient

Difference with OT

• π ∈ U(α, β) −→ π ∈M+(X × Y)

• Fixed marginal constraints are replaced by KL(π1‖α) penalties
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Robust OT
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Lemma

Let (α, β) be two probability distributions. For ζ ∈ [0, 1], write

α̃ = ζα+ (1− ζ)δz. Write m(z) =
∫
C(z,y)dβ(y).

UOTτ,0(α̃, β, C) . ζ UOTτ,0(α, β, C) + 2τ(1− ζ)(1− e−m(z)/2τ )

49 / 63



Unbalanced minibatch OT plan

OT
 m

at
rix

UMB(τ=0.01,m=2)

OT
 o

f s
am

pl
es

UMB(τ=0.01,m=2)

UMB(τ=0.05,m=2)

UMB(τ=0.05,m=2) MBOT(τ= + ∞, m=2)

MBOT(τ= + ∞, m=2)

UOT(ε=0.05,τ=0.1)

UOT(ε=0.05,τ=0.1)

Entropic(ε=0.05)

0.0

0.2

0.4

0.6

0.8

1.0

Entropic(ε=0.05)

0.0

0.2

0.4

0.6

0.8

1.0

Unbalanced MBOT keeps the same properties as MBOT

• Same loss properties (not a distance but symmetric)

• Same deviation bounds rates

• Same unbiased gradients
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Domain adaptation problem

Illustration of partial domain adaptation

Source data
Target data
class1
class2
class3

Method

• jumbot aligns a joint law between embedded samples and labels

like deepjdot

• Use unbalanced minibatch OT instead of minibatch OT

• Can be applied to partial DA unlike deepjdot
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Results, ablation and sensitivity

jumbot outperforms state of the art methods on digits (U-M-S),

Office Home and VisDA datasets including Partial Office-Home

Methods U → M S → M

deepjdot 96.4 ± 0.3 95.4 ± 0.1

entropic deepjdot 97.1 ± 0.3 97.6 ± 0.1

jumbot 98.2 ± 0.1 98.9 ± 0.1

102

batch size m
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90
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94

96

98

Ac
cu

ra
cy

JUMBOT  and JDOT batch size sensitivity analysis

JUMBOT  USPS MNIST
JUMBOT  SVHN MNIST
JDOT USPS MNIST
JDOT SVHN MNIST
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Summary on unbalanced minibatch optimal transport

OT
 m

at
rix

UMB(τ=0.01,m=2)
OT

 o
f s

am
pl

es

UMB(τ=0.01,m=2)

UMB(τ=0.05,m=2)

UMB(τ=0.05,m=2) MBOT(τ= + ∞, m=2)

MBOT(τ= + ∞, m=2)

UOT(ε=0.05,τ=0.1)

UOT(ε=0.05,τ=0.1)

Entropic(ε=0.05)

0.0

0.2

0.4

0.6

0.8

1.0

Entropic(ε=0.05)

0.0

0.2

0.4

0.6

0.8

1.0

• Minibatch optimal transport creates non-optimal connections

• Replace OT by unbalanced OT

• Same statistical and optimization properties

• jumbot outperforms MBOT methods on DA experiments

Published in [Fatras et al., 2021b]
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Conclusion

• Optimal transport in deep

learning

• as an adversarial regularization

for noisy labels

• to generate misclassified data

• Minibatch optimal transport

• transport problem but not a

distance

• good statistical and

optimization properties

• unbalanced optimal transport

to mitigate bad connections
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Future Works

Future work on

• Optimal transport in deep

learning

• Ground cost for WAR

• Optimal transport for

out-of-distribution samples

• Normalizing flow

• To learn weights to make OT

robust to outliers

• Optimal transport

• Sliced unbalanced OT

• Unbalanced OT when τ → 0

• New sampling schemes of MBOT
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Publications

• Wasserstein adversarial regularization [Fatras et al., 2021a]

• ARWGAN [Burnel et al., 2020, Burnel et al., 2021]

• Minibatch optimal transport formalism

[Fatras et al., 2020b, Fatras et al., 2020a, Fatras et al., 2021c]

• Unbalanced minibatch optimal transport [Fatras et al., 2021b]

• Stochastic optimization [Pedregosa et al., 2019]

• Open source OT library [Flamary et al., 2021]

Thank you for your attention !
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Appendix



Hyperparameters i

Datasets η1 η2 η3 τ ε

Digits 0.1 0.1 1 1 0.1

VisDA 0.005 1 1 0.3 0.01

Office-Home 0.01 0.5 1 0.5 0.01

Partial Office-Home 0.003 0.75 10 0.06 0.01



Clarke regularity

Definition

A function f is said to be Clarke regular at x provided:

• For all v, the usual one-sided directional derivative f ′(x,v) exists

• For all v, f ′(x;v) = f◦(x;v)



Full echange gradients and expectations theorem

Theorem

Let u be uniform probability vectors and let X be a Rdm-valued

random variable, and {Y θ} a family of Rdm-valued random variables

defined on the same probability space, indexed by θ ∈ Θ, where Θ ⊂ Rq

is open. Assume that θ 7→ Y θ is C1. Consider a C1 cost C,

h ∈ {UOTτ,ε}, and assume in addition that the random variables

X, {Yθ}θ∈Θ are compactly supported. If for all θ ∈ Θ there exists an

open neighbourhood U , θ ∈ U ⊂ Θ, and a random variable

KU : Ω→ R with finite expected value, such that

‖C(X(ω),Y θ1(ω))− C(X(ω),Y θ2(ω))‖ ≤ KU (ω)‖θ1 − θ2‖ (3)

then we have

∂θ E [h(u,u, C(X,Y θ))] = E [∂θh(u,u, C(X,Y θ))] . (4)

with both expectation being finite. Furthermore the function

θ 7→ −E [h(u,u, C(X,Y θ))] is also Clarke regular.
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