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Introduction on deep learning and optimal transport
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• Introduction on deep learning

• Neural networks

• Applications

• Probability distributions

• Introduction on optimal

transport

• Definitions

• Properties

• Entropic variant
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Neural network illustration

Deep learning is a tool to estimate non-linear complex functions

• Neural networks: many stacked layers and each layer is made of

neurons

• Parameters of neural networks: connections between layers

• Different layers: convolutional layers, fully connected layers, ...
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Motivating example: Classification

Classification problem: predicting the class of a given image
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Motivating example: Classification

• Find a function fθ which describes the relationship between the

space of images and the space of classes

• fθ is a neural network !

fθ




 0.1 clown fish

= 0.2 grouper

0.7 turtle

• n training samples: (x1,y1), · · · , (xn,yn)

• Goal: minimizing the empirical risk with respect to θ

minθ R(fθ) = minθ
1

N

N∑
i=1

L(yi, fθ(xi))
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Motivating example: Domain adaptation

Domain adaptation (DA) setting

• Two domains with same classes, only one with labels

• Goal: classify unlabeled target data with source labeled data

• xsi ,x
t
j have same class → gφ(xi) ≈ gφ(xj) and yi = fθ(gφ(xj)))
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Motivating example: Generative adversarial networks

Goal: generating new images

• Generative adversarial networks (GANs) developed in

[Goodfellow et al., 2014]

• Gθ tries to fool Dφ

• Dφ tries to predict if an image is real or not
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Motivating example: Generative adversarial networks

Goal: generating new images

• α ∈ P(X ), ζ ∈ P(Z) are probability distributions

• Loss: minθ maxφ Ex∼α log
(
Dφ(x)

)
− Ez∼ζ log

(
1−Dφ(Gθ(z))

)
The loss can be reformulated with a Jensen-Shannon divergence

between generated and training distributions
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Training samples as distributions paradigm

Applications use probability distributions to train neural networks

• Classification: function L takes probability vectors as inputs

• Domain adaptation: align embedding probability distributions

from domains

• GANs: distance between generated and training distributions

θ̂ = arg min
θ∈Θ

L(αn, βθ)

Goal : Find a suitable function L between probability distributions
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Comparing probability distributions

(x)
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Comparing probability distributions

(x)

(x)

ϕ-divergences compare mass ratio point-wise α(x)/β(x) (β(x) > 0)

Lϕ(α|β) =

∫
X
ϕ

(
dα

dβ

)
dβ
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Comparing probability distributions

(x)

(x)

ϕ-divergences compare mass ratio point-wise α(x)/β(x) (β(x) > 0)

Lϕ(α|β) =

∫
X
ϕ

(
dα

dβ

)
dβ

• ϕ-divergences cannot compare Diracs

→ fail to capture the geometry

• KL(α|βt) = +∞
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Comparing probability distributions

(x)

(x)

ϕ-divergences compare mass ratio point-wise α(x)/β(x) (β(x) > 0)

Lϕ(α|β) =

∫
X
ϕ

(
dα

dβ

)
dβ

• ϕ-divergences cannot compare Diracs

→ fail to capture the geometry

• KL(α|βt) = +∞ but KL(α|β∞) = 0

8 / 63



Optimal Transport definition

Ingredients

• Probability distributions α ∈ P(X ) and β ∈ P(Y)

• A ground cost c : X × Y → R+ with X and Y metric spaces
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Ingredients
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Optimal Transport definition

Definition (Kantorovich problem [Kantorovich, 1942])

min
π∈U(α,β)

∫
X×Y

c(x,y)dπ(x,y)

with : U(α, β) = {π ∈ P(X ×Y),

∫
Y
π(x,y)dy = α,

∫
X
π(x,y)dx = β}
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Discrete Optimal Transport

Discrete ingredients

• Discrete distributions α =
∑n
i=1 aiδxi and β =

∑n
j=1 bjδyj

• Cost matrix C = C(X,Y ), such that Ci,j = c(xi,yj)
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Discrete Optimal Transport

For discrete distributions, OT becomes a linear program:

Definition (Discrete Optimal Transport)

OT(α, β, C) = min
Π∈U(α,β)

∑
i,j

Πi,jCi,j

U(α, β) =
{

Π ∈
(
R+
)n×n |Π1n = a,ΠT1n = b

}
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Wasserstein distance

Some properties

• Leverages geometry of sample spaces through C

• A solution always exists (ex. π = α⊗ β)

• 〈Π, C〉F is linear in the transport plan and in the cost

• Computational complexity of discrete OT is O(n3log(n))

Definition (Wasserstein distance)

C is a ground metric, then OT cost Wp is a metric for p ≥ 1 and where

Wp(α, β, C
p) =

(
min

Π∈U(α,β)
〈Π, Cp〉F

)1/p

Proposition (Kantorovich–Rubinstein duality)

W1(α, β, C) = supf∈Lip1(X ) Ex∼α[f(x)]− Ez∼β [f(z)]
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Entropic Optimal Transport

Definition (Entropic Optimal Transport [Cuturi, 2013])

OTε(α, β, C) = min
Π∈U(α,β)

∑
i,j

Πi,jCi,j + εKL(Π|α⊗ β)

∀x,y ∈ Rn+,KL(x|y) =
∑
i

xi log
(xi
yi

)
− xi + yi

• Functional is strongly convex in the transport plan

• Computational complexity of entropic OT is O
(

n2

ε

)
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Summary on neural networks and optimal transport

6464 25
6

128 128 12
8

256 256 64

1 40
96 1 10 10

SOFTMAX

• Summary on neural networks

• Neural networks are stacked layers

of neurons

• Competitive methods on

classification, domain adaptation

and GANs

• Summary on optimal transport

+ Loss function/distance between

distributions of samples

+ Leverages geometry of sample

spaces through C

- Cubical computational complexity

of discrete OT

+/- Faster and easy computable

entropic variant
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Table of contributions

• Optimal transport as a loss

function in deep learning

Geometry on label distributions ← Optimal transport adversarial

regularization for noisy labels

Geometry on sample distributions ← Optimal transport loss function

to generate misclassified data

• Minibatch optimal transport

• Minibatch optimal transport

formalism

• Unbalanced minibatch optimal

transport
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Wasserstein Adversarial Regularization for noisy labels

• Label noise: label does not correspond to the image class

• Occurs in real-world dataset → neural networks overfitting

[Zhang et al., 2017].

• Enforce uniformity prediction around the vicinity of samples

• Use optimal transport in the regularization
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Robust optimization illustration

Robust optimization:

argminθ

n∑
i=1

max
xui ∈Bρ(xi)

LCE(fθ(x
u
i ),yi) (1)

• Intuition: noisy labels mitigated by uniform prediction

• Cannot rely on labels → use prediction
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Virtual adversarial training

VAT’s loss function [Miyato et al., 2018]:

LVAT((X,Y ), fθ) =
1

n

n∑
i=1

L(yi, fθ(xi))︸ ︷︷ ︸
Supervised loss

+βKL(f̂θ(xi), fθ(xi + ri))︸ ︷︷ ︸
regularization term

where ri = argmax
r,‖r‖≤ρ

KL(f̂θ(xi), fθ(xi + r))
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Encoding class similarities

• KL divergence penalizes errors between classes in the same

manner

• Replace KL divergence by optimal transport
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Wasserstein adversarial regularization

The WAR loss function is:

LWAR((X,Y ), fθ) =
1

n

n∑
i=1

L(yi, fθ(xi))︸ ︷︷ ︸
Supervised loss

+βOTεC(f̂θ(xi), fθ(xi + ri))︸ ︷︷ ︸
regularization term

where ri = argmax
r,‖r‖≤ρ

OTεC(f̂θ(xi), fθ(xi + r))

For the ground cost C, we want:

• High cost between close classes to get complex boundaries

• Small cost between non-similar classes to get smooth boundaries

The OT cost between labels was also studied in [Frogner et al., 2015]
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Learning with WAR

C=

 0 1 1

1 0 5

1 5 0

• Regularization geometry for different adversarial regularizations

• (Top) Regularization values on the simplex of class probabilities

• (Down) Classification boundaries for different methods
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Experiments

• Test accuracy (%) on Fashion-MNIST, CIFAR-10, and

CIFAR-100 datasets

• Varying noise rates (20% and 40%)

Dataset / noise CCE Bootsoft CoTeaching VAT WARC

F-MNIST
20% 89.02±0.47 88.17±0.11 91.24±0.06 93.10±0.14 93.37±0.08

40% 78.85±0.56 73.84±0.28 86.83±0.10 89.74±0.10 90.41±0.02

CIFAR-10
20% 85.26±0.09 85.35 ± 0.8 86.19 ±0.07 88.91±0.09 89.12±0.48

40% 76.23±0.15 74.32 ± 0.2 80.87±0.09 81.98±0.25 84.55±0.78

CIFAR-100
20% 58.81±0.10 58.97±0.08 60.90±0.03 65.44±0.11 62.72±0.16

40% 42.45±0.12 41.73±0.08 42.73±0.08 55.75±0.14 58.86±0.21
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Summary on Wasserstein Adversarial Regularization

• Noisy labels are corrupted

labels and hurt the

performances of neural

networks

• Promoting uniform

classification around inputs

mitigate their influence

• Integrate optimal transport to

control the uniform

classification

Published in [Fatras et al., 2021a]
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Generating misclassified data

• Attack the classifier

• Introduction on misclassified

examples

• How OT can be used to

generate data

• Generating misclassified

examples with just the output

of the classifier
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Generating misclassified data

Our objective is to generate samples from the gray class which are

classified as blue data

• Generate adversarial examples

• Most adversarial examples generation uses classifier architecture

• Some methods hurt quality of adversarial images
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Generating data with Wasserstein GAN

To generate data, we use the Wasserstein Generative Adversarial

Networks (WGAN) [Arjovsky et al., 2017]

We use the Kantorovich-Rubinstein duality theorem and we minimize:

min
θ
W1(α,Gθ#ζ) = min

θ
max
φ

Ex∼α[Dφ(x)]− Ez∼ζ [Dφ(Gθ(z))]

→ Dφ needs to be 1-Lipschitz
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Defining a new distribution

Create a new distribution which gives bigger weights to misclassified

data, 1
n

∑n
i=1 δxi →

∑n
i=1 aiδxi ,

∑n
i=1 ai = 1

• Hard weighting (only consider misclassified samples)

• Soft weighting (weight depends on how much the sample is

misclassified)

28 / 63



Generating misclassified data

• Fool classifiers on hyperspectral images

• Transfer misclassified examples to unseen classifiers

• Can modify images to fool classifier

• Can fool state of the art detector Yolo V3
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Summary on ARWGAN

• Attacked the classifier

• Used WGAN to generate samples

• Created new empirical distributions

• Applied on remote sensing data

Published in [Burnel et al., 2021, Burnel et al., 2020]
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Table of contributions

• Optimal transport as a loss

function in deep learning

Geometry on label distributions ← Optimal transport adversarial

regularization for noisy labels

Geometry on sample distributions ← Optimal transport loss function

to generate misclassified data

• Minibatch optimal transport

• Minibatch optimal transport

formalism

• Unbalanced minibatch optimal

transport
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Minibatch optimal transport

• Minibatch optimal transport formalism

• Loss properties

• Statistical and optimization properties
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Time experiment

Optimal transport can be computed between a lot of samples

depending on the application

102 103 104

Number of samples (n)

10 3

10 2

10 1

100

101

Ti
m

e 
(s

)

Time for different OT solvers
emd time
sinkhorn time, = 0.01
sinkhorn time, = 0.1
sinkhorn time, = 1

OT between 2D distributions
Source samples
Target samples

Limits

Can not be used in Big Data scenario !
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Minibatch Optimal Transport definition

Let m ≤ n, [Damodaran et al., 2018, Genevay et al., 2018] compute

optimal transport between minibatch (MBOT) of distributions

Minibatch strategy

• Select m samples without replacement at random in domains

• Compute OT between the minibatches

• Average several MBOT terms → complexity O(m3)
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Minibatch Optimal Transport definition

Expectation of minibatches

Computing OT kernel h between minibatches estimates:

Eh(α, β, C) := E(X,Y )∼α⊗m⊗β⊗m [h(µm, µm, C(X,Y ))]

can be any OT variants h (Gromov-Wasserstein distance, Sliced

Wasserstein distance, ...)
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Estimate minibatch OT distance

Definition (Complete minibatch estimator)

h
m

(X,Y ) :=

(
n

m

)−2 ∑
I,J∈Pm

h(µm, µm, CI,J)

Πm(X,Y ) :=

(
n

m

)−2 ∑
I,J∈Pm

ΠI,J

• where Pm is the set of all m-tuples without replacement

• Πm(X,Y ) is an admissible transport plan between the input

probability distributions Π ∈ U(µn, µn)

Definition (Incomplete minibatch estimator)

h̃mk (X,Y ) := k−1
∑

(I,J)∈Dk

h(µm, µm, CI,J)

where k > 0 is an integer and Dk is a set of cardinality k whose elements

are minibatches drawn at random
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1D OT closed-form

1D distributions
Source samples
Target samples

1D closed-form

• Sorted 1D data with uniform weights

• Optimal Transport plan is the identity scaled by a uniform weight
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1D OT closed-form

1D OT close form solution

Source samples
Target samples

0 2 4 6 8

0

2

4

6

8

1D OT close form transport plan

0.00

0.02

0.04

0.06

0.08

0.10

1D closed-form

• Sorted 1D data with uniform weights

• Optimal Transport plan is the identity scaled by a uniform weight
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1D Minibatch Optimal Transport closed-form

πj,k =
1

m

(
n

m

)−2 imax∑
i=imin

(
j − 1

i− 1

)(
k − 1

i− 1

)(
n− j
m− i

)(
n− k
m− i

)
where imin = max(0,m− n+ j,m− n+ k) and imax = min(j, k)
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2D Minibatch Optimal Transport

MBOT on a toy example

• 2 balanced classes in the source and target domains

• Classes are in different clusters
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Estimator properties

Proposition

We have the following properties:

• h
m

, h̃mk are unbiased estimators of Eh

• Strictly positive loss: h(α, α) > 0

Difference with OT

• " Minibatch OT is not a metric!

• OT empirical estimator is a biased estimator of OT between

continuous measures (Eαn,βnW (αn, βn) 6= W (α, β))

[Bellemare et al., 2017]

From now on, we suppose that α and β compactly supported and the

cost c is at least continuous on X and Y
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Deviation bounds

How far is our incomplete estimator h̃mk to the expectation over

minibatches Eh?

Theorem (Maximal deviation bound)

Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be fixed. Consider two

n-tuples X ∼ α⊗n and Y ∼ β⊗n. With probability at least 1− δ on the

draw of X,Y and Dk we have:

|h̃mk (X,Y )− Eh| ≤M

√ log( 2
δ )

2b nmc
+

√
2 log(2

δ )

k

 , (2)

where M is an OT upper bound
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Data fitting problem

Let discrete samples (xi)
n
i=1 ∈ Rd and their empirical distribution αn

Goal: to fit a parametric model θ 7→ βθ ∈M+
1 (Rd) to αn using OT

θ̂ = arg min
θ∈Θ

OTc(αn, βθ)

It is known as Minimum Wasserstein estimator

Parameters are updated as θt+1 = θt + ηlr∇θ OTc(αn, βθ)
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Data fitting problem

Let discrete samples (xi)
n
i=1 ∈ Rd and their empirical distribution αn

Goal: to fit a parametric model θ 7→ βθ ∈M+
1 (Rd) to αn using OT

θ̂ = arg min
θ∈Θ

h̃mk (αn, βθ)

Replace Wasserstein distance by minibatch OT to use SGD

Parameters are updated as θt+1 = θt + ηlr∇θh̃mk (αn, βθ)

Minimum Wasserstein estimator

Wasserstein estimator

Minimum MB Wasserstein estimator

minibatch Wasserstein estimator
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Data fitting problem

Let discrete samples (xi)
n
i=1 ∈ Rd and their empirical distribution αn

Goal: to fit a parametric model θ 7→ βθ ∈M+
1 (Rd) to αn using OT

θ̂ = arg min
θ∈Θ

h̃mk (αn, βθ)

We replace the Wasserstein distance by minibatch OT to use SGD

Parameters are updated as θt+1 = θt + ηlr∇θh̃mk (αn, βθ)

Does minimizing this expectation with SGD converge

towards the right minimum ?

• h
m
, h̃mk are unbiased estimators of Eh

• Can we exchange gradients and expectations?
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Exchange gradient and expectation

Consider Clarke generalized gradients (defined for locally Lipschitz

functions [Clarke, 1990])

Theorem

Let X̂, {Ŷθ}θ∈Θ be two m-tuples of random vectors compactly

supported and Cm a C1 cost. Under an additional integrability

assumption, we have:

∂θ E[h(µm, µm, C
m(X̂, Ŷθ))] = E[∂θh(µm, µm, C

m(X̂, Ŷθ))],

with both expectation being finite. Furthermore the function

θ 7→ −E[h(µm, µm, C
m(X̂, Ŷθ))] is also Clarke regular.

→ SGD converges almost surely [Davis et al., 2020]
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Summary on minibatch optimal transport

• Minibatch optimal transport formalism

• MBOT is a transport problem but not a distance

• Good statistical and optimization properties

Published in [Fatras et al., 2020b, Fatras et al., 2020a] and submitted

in [Fatras et al., 2021c]
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Unbalanced minibatch optimal transport

OT plan
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• Limits of MBOT

• Unbalanced minibatch OT

• Domain adaptation

experiments
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Limits of Minibatch Optimal Transport

Limits of minibatch OT

" Minibatches and marginal constraints create connections between

classes !
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Limits of Minibatch Optimal Transport

This is due to

• the sampling effect

• the marginal constraints

These force users to use large minibatch size [Damodaran et al., 2018]
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Unbalanced Optimal Transport

Definition

Unbalanced optimal transport (UOT) measures the OT cost between

probability distributions with relaxed marginals

UOTτ,ε(α, β, c) = min
π∈M+(X×Y)

∫
cdπ + εKL(π|α⊗ β)

+τ(KL(π1‖α) + KL(π2‖β)),

where π is the transport plan, π1 and π2 the plan’s marginals, τ ≥ 0

is the marginal penalization and ε ≥ 0 is the regularization coefficient

Difference with OT

• π ∈ U(α, β) −→ π ∈M+(X × Y)

• Fixed marginal constraints are replaced by KL(π1‖α) penalties
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Robust OT
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Lemma

Let (α, β) be two probability distributions. For ζ ∈ [0, 1], write

α̃ = ζα+ (1− ζ)δz. Write m(z) =
∫
C(z,y)dβ(y).

UOTτ,0(α̃, β, C) . ζ UOTτ,0(α, β, C) + 2τ(1− ζ)(1− e−m(z)/2τ )
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Unbalanced minibatch OT plan
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Unbalanced MBOT keeps the same properties as MBOT

• Same loss properties (not a distance but symmetric)

• Same deviation bounds rates

• Same unbiased gradients
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Domain adaptation problem

Illustration of partial domain adaptation

Source data
Target data
class1
class2
class3

Method

• jumbot aligns a joint law between embedded samples and labels

like deepjdot

• Use unbalanced minibatch OT instead of minibatch OT

• Can be applied to partial DA unlike deepjdot
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Results, ablation and sensitivity

jumbot outperforms state of the art methods on digits (U-M-S),

Office Home and VisDA datasets including Partial Office-Home

Methods U → M S → M

deepjdot 96.4 ± 0.3 95.4 ± 0.1

entropic deepjdot 97.1 ± 0.3 97.6 ± 0.1

jumbot 98.2 ± 0.1 98.9 ± 0.1

102

batch size m

88

90

92

94

96

98

Ac
cu

ra
cy

JUMBOT  and JDOT batch size sensitivity analysis

JUMBOT  USPS MNIST
JUMBOT  SVHN MNIST
JDOT USPS MNIST
JDOT SVHN MNIST
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Summary on unbalanced minibatch optimal transport

OT
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• Minibatch optimal transport creates non-optimal connections

• Replace OT by unbalanced OT

• Same statistical and optimization properties

• jumbot outperforms MBOT methods on DA experiments

Published in [Fatras et al., 2021b]
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Conclusion

• Optimal transport in deep

learning

• as an adversarial regularization

for noisy labels

• to generate misclassified data

• Minibatch optimal transport

• transport problem but not a

distance

• good statistical and

optimization properties

• unbalanced optimal transport

to mitigate bad connections
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Future Works

Future work on

• Optimal transport in deep

learning

• Ground cost for WAR

• Optimal transport for

out-of-distribution samples

• Normalizing flow

• To learn weights to make OT

robust to outliers

• Optimal transport

• Sliced unbalanced OT

• Unbalanced OT when τ → 0

• New sampling schemes of MBOT
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Publications

• Wasserstein adversarial regularization [Fatras et al., 2021a]

• ARWGAN [Burnel et al., 2020, Burnel et al., 2021]

• Minibatch optimal transport formalism

[Fatras et al., 2020b, Fatras et al., 2020a, Fatras et al., 2021c]

• Unbalanced minibatch optimal transport [Fatras et al., 2021b]

• Stochastic optimization [Pedregosa et al., 2019]

• Open source OT library [Flamary et al., 2021]

Thank you for your attention !
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[Clémençon et al., 2016] Clémençon, S., Colin, I., and Bellet, A. (2016).

Scaling-up empirical risk minimization: Optimization of incomplete

u-statistics.

Journal of Machine Learning Research.

[Courty et al., 2017] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A.

(2017).

Optimal transport for domain adaptation.

IEEE Transactions on Pattern Analysis and Machine Intelligence.

[Cuturi, 2013] Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport.

In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger,

K. Q., editors, Advances in Neural Information Processing Systems 26, pages

2292–2300. Curran Associates, Inc.

[Damodaran et al., 2018] Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D.,

and Courty, N. (2018).

DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised

Domain Adaptation.

In ECCV 2018 - 15th European Conference on Computer Vision. Springer.

[Davis et al., 2020] Davis, D., Drusvyatskiy, D., Kakade, S., and Lee, J. D. (2020).

Stochastic subgradient method converges on tame functions.

Foundations of computational mathematics, 20(1):119–154.

58 / 63



References iii

[Fatras et al., 2021a] Fatras, K., Bushan, B., Lobry, S., Flamary, R., Tuia, D., and

Courty, N. (2021a).

Wasserstein adversarial regularization for learning with label noise.

IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1.
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Appendix



Hyperparameters i

Datasets η1 η2 η3 τ ε

Digits 0.1 0.1 1 1 0.1

VisDA 0.005 1 1 0.3 0.01

Office-Home 0.01 0.5 1 0.5 0.01

Partial Office-Home 0.003 0.75 10 0.06 0.01



Clarke regularity

Definition

A function f is said to be Clarke regular at x provided:

• For all v, the usual one-sided directional derivative f ′(x,v) exists

• For all v, f ′(x;v) = f◦(x;v)



Full echange gradients and expectations theorem

Theorem

Let u be uniform probability vectors and let X be a Rdm-valued

random variable, and {Y θ} a family of Rdm-valued random variables

defined on the same probability space, indexed by θ ∈ Θ, where Θ ⊂ Rq

is open. Assume that θ 7→ Y θ is C1. Consider a C1 cost C,

h ∈ {UOTτ,ε}, and assume in addition that the random variables

X, {Yθ}θ∈Θ are compactly supported. If for all θ ∈ Θ there exists an

open neighbourhood U , θ ∈ U ⊂ Θ, and a random variable

KU : Ω→ R with finite expected value, such that

‖C(X(ω),Y θ1(ω))− C(X(ω),Y θ2(ω))‖ ≤ KU (ω)‖θ1 − θ2‖ (3)

then we have

∂θ E [h(u,u, C(X,Y θ))] = E [∂θh(u,u, C(X,Y θ))] . (4)

with both expectation being finite. Furthermore the function

θ 7→ −E [h(u,u, C(X,Y θ))] is also Clarke regular.
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