Introduction on Optimal Transport for Deep Learning

First definitions and properties

Kilian Fatras
March 24th, 2022

Mila, McGill
Introduction on deep learning and optimal transport

- Introduction on deep learning
 - Neural networks
 - Applications
 - Probability distributions

- Introduction on optimal transport
 - Definitions
 - Properties
 - Entropic variant
Introduction on Neural networks
Deep learning is a tool to estimate non-linear complex functions

- Neural networks: many stacked layers and each layer is made of neurones
- Parameters of neural networks: connections between layers
- Different layers: convolutional layers, fully connected layers, ...
Motivating example: Classification

- Find a function f_θ which describes the relationship between the space of images and the space of classes
- f_θ is a **neural network**!

$$f_\theta \left(\begin{array} \end{array} \right) = \begin{pmatrix} 0.1 \\
0.2 \\
0.7 \
\end{pmatrix}$$

- n training samples: $(x_1, y_1), \ldots, (x_n, y_n)$
- Goal: minimizing the *empirical risk* with respect to θ

$$\min_\theta R(f_\theta) = \min_\theta \frac{1}{N} \sum_{i=1}^{N} L(y_i, f_\theta(x_i))$$
Motivating example: Domain adaptation

Domain adaptation (DA) setting

- Two domains with same classes, only one with labels
- Goal: classify unlabeled target data with source labeled data

\[x^s_i, x^t_j \text{ have same class } \rightarrow g_\phi(x_i) \approx g_\phi(x_j) \text{ and } y_i = f_\theta(g_\phi(x_j)) \]
Motivating example: Generative adversarial networks

Goal: generating new images

- Generative adversarial networks (GANs) developed in [Goodfellow et al., 2014]
- G_{θ} tries to fool D_{ϕ}
- D_{ϕ} tries to predict if an image is real or not
Motivating example: Generative adversarial networks

Goal: generating new images

\[P(X), P(Z) \] are probability distributions

Loss: \(\min \alpha \max \phi \mathbb{E}_{x \sim \alpha} \log (D_\phi(x)) - \mathbb{E}_{z \sim \zeta} \log (1 - D_\phi(G_\theta(z))) \)

The loss can be reformulated with a Jensen-Shannon divergence between generated and training distributions
Training samples as distributions paradigm

Applications use probability distributions to train neural networks

- Classification: function L takes probability vectors as inputs
- Domain adaptation: align embedding probability distributions from domains
- GANs: distance between generated and training distributions

\[
\hat{\theta} = \arg\min_{\theta \in \Theta} L(\alpha_n, \beta_\theta)
\]

Goal: Find a suitable function L between probability distributions
Divergence and metric between probability distributions

Definition (Divergence)

Consider a set S. A divergence on S is a function $d : S \times S \mapsto [0, \infty]$ such that for all x, y:

- $d(x, y) \geq 0$ (non negativity)
- $d(x, y) = 0$ if and only if $x = y$ (separability)

Definition (Distance/Metric)

Consider a set S. A distance on S is a function $d : S \times S \mapsto [0, \infty]$ such that for all x, y, z:

- $d(x, y) \geq 0$ (non negativity)
- $d(x, y) = 0$ if and only if $x = y$ (separability)
- $d(x, y) = d(y, x)$ (symmetry)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality)
Comparing probability distributions
Comparing probability distributions

Suppose φ convex, $\varphi(1) = 0$ and α absolutely continuous wrt β. φ-divergences compare mass ratio point-wise $\alpha(x)/\beta(x)$ ($\beta(x) > 0$).

$$L_\varphi(\alpha|\beta) = \int_{\mathcal{X}} \varphi \left(\frac{d\alpha}{d\beta} \right) d\beta$$

We give several examples of φ-divergences.
Comparing probability distributions

Suppose \(\varphi \) convex, \(\varphi(1) = 0 \) and \(\alpha \) absolutely continuous \(\text{wrt} \ \beta \). \(\varphi \)-divergences compare mass ratio point-wise \(\alpha(x)/\beta(x) \) \((\beta(x) > 0) \).

\[
L_\varphi(\alpha|\beta) = \int_X \varphi \left(\frac{d\alpha}{d\beta} \right) d\beta
\]

We can get the Kullback-Leibler divergence for \(\varphi(x) = x \log(x) \),

\[
KL(\alpha|\beta) = \int_X \log \left(\frac{d\alpha}{d\beta} \right) d\alpha
\]
Comparing probability distributions

Suppose φ convex, $\varphi(1) = 0$ and α absolutely continuous \textit{wrt} β. φ-divergences compare mass ratio point-wise $\alpha(x)/\beta(x)$ ($\beta(x) > 0$).

$$L_\varphi(\alpha|\beta) = \int_{\mathcal{X}} \varphi \left(\frac{d\alpha}{d\beta} \right) d\beta$$

We can get the Total-Variation norm for $\varphi(x) = \frac{1}{2} |x - 1|$,

$$TV(\alpha|\beta) = \int_{\mathcal{X}} \frac{1}{2} \left| \frac{d\alpha}{d\beta} - 1 \right| d\alpha$$
Comparing probability distributions

Suppose φ convex, $\varphi(1) = 0$ and α absolutely continuous wrt β. φ-divergences compare mass ratio point-wise $\alpha(x)/\beta(x)$ ($\beta(x) > 0$).

$$L_\varphi(\alpha|\beta) = \int_X \varphi \left(\frac{d\alpha}{d\beta} \right) d\beta$$

- φ-divergences cannot compare Diracs
 - fail to capture the geometry
- $KL(\alpha|\beta_t) = +\infty$
Comparing probability distributions

Suppose φ convex, $\varphi(1) = 0$ and α absolutely continuous wrt β. φ-divergences compare mass ratio point-wise $\alpha(x)/\beta(x)$ ($\beta(x) > 0$).

$$L_\varphi(\alpha|\beta) = \int_X \varphi \left(\frac{d\alpha}{d\beta} \right) d\beta$$

- φ-divergences cannot compare Diracs
 \rightarrow fail to capture the geometry
- $\text{KL}(\alpha|\beta_t) = +\infty$ but $\text{KL}(\alpha|\beta_\infty) = 0$
Weak convergence topology

Definition (Convergence in metric space)
A sequence \(\{l_t\}_{t \in \mathbb{N}} \) of elements of a metric space \((S, d)\) is said to converge to a limit \(l \in S \) if \(\lim_{t \to \infty} d(l_t, l) = 0 \).

For probability distributions, sequence \(\beta_t \) converges to \(\beta \) with respect to a divergence \(d \) if \(\lim_{t \to \infty} d(\beta_t, \beta) = 0 \). (Be careful with the symmetry!)

\(\varphi \)-divergences do not metrize the weak convergence.

Example (TV-divergences)
For the probability sequence \(\delta_{\frac{1}{n}} \), It is clear that \(\lim_{t \to \infty} \delta_{\frac{1}{n}} = \delta_0 \) but we have \(\lim_{t \to \infty} \text{TV}(\delta_{\frac{1}{n}}, \delta_0) = \lim_{t \to \infty} 1 = 1 \).

So we are looking for a function \(d \) which can compare probability distributions and which metrizes the weak convergence.
Introduction on Optimal Transport
Optimal Transport definition

Ingredients

- Probability distributions $\alpha \in \mathcal{P}(\mathcal{X})$ and $\beta \in \mathcal{P}(\mathcal{Y})$
- A ground cost $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$ with \mathcal{X} and \mathcal{Y} metric spaces
Optimal Transport definition

Ingredients

- Probability distributions $\alpha \in \mathcal{P}(\mathcal{X})$ and $\beta \in \mathcal{P}(\mathcal{Y})$
- A ground cost $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$ with \mathcal{X} and \mathcal{Y} metric spaces
Definition (Kantorovich problem [Kantorovich, 1942])

\[\min_{\pi \in U(\alpha, \beta)} \int_{X \times Y} c(x, y) d\pi(x, y) \]

with: \(U(\alpha, \beta) = \{ \pi \in \mathcal{P}(X \times Y), \int_Y \pi(x, y) dy = \alpha, \int_X \pi(x, y) dx = \beta \} \)
Discrete Optimal Transport

Discrete ingredients

- Discrete distributions \(\alpha = \sum_{i=1}^{n} a_i \delta_{x_i} \) and \(\beta = \sum_{j=1}^{n} b_j \delta_{y_j} \)
- Cost matrix \(C = C(X, Y) \), such that \(C_{i,j} = c(x_i, y_j) \)
For discrete distributions, OT becomes a linear program:

Definition (Discrete Optimal Transport)

\[
\text{OT}(\alpha, \beta, C) = \min_{\Pi \in U(a, b)} \sum_{i, j} \Pi_{i, j} C_{i, j}
\]

\[
U(a, b) = \left\{ \Pi \in (\mathbb{R}^+)^{n_1 \times n_2} \mid \Pi 1_{n_1} = a, \Pi^T 1_{n_2} = b \right\}
\]
Consider the following 2D example:

The probability distribution weights are:

\[a = \left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right]^\top \]

\[b = \left[\frac{1}{3}, \frac{2}{3} \right]^\top \]

What is the optimal transport plan \(\Pi \)?
Example of optimal plan

OT between two 2D discrete distributions

\[a_1 = \frac{1}{4}, \quad a_2 = \frac{1}{4}, \quad a_3 = \frac{1}{4}, \quad a_4 = \frac{1}{4}, \quad b_1 = \frac{1}{3}, \quad b_2 = \frac{2}{3} \]

\[
\Pi = \begin{bmatrix}
0.083 & 0.167 \\
0 & 0.25 \\
0.25 & 0 \\
0 & 0.25 \\
\end{bmatrix}
\quad \Pi_1 2 = \begin{bmatrix}
0.083 & 0.167 \\
0 & 0.25 \\
0.25 & 0 \\
0 & 0.25 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
\end{bmatrix} = \begin{bmatrix}
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4} \\
\end{bmatrix} = \alpha
\]
Example of optimal plan

OT between two 2D discrete distributions

Source samples
Target samples

\(\begin{align*}
\Pi &= \begin{bmatrix}
0.083 & 0.167 \\
0 & 0.25 \\
0.25 & 0 \\
0 & 0.25 \\
\end{bmatrix} \\
\Pi^\top \mathbf{1}_2 &= \begin{bmatrix}
0.083 & 0 & 0.25 & 0 \\
0.167 & 0.25 & 0 & 0.25 \\
1 & 1 & 1 & 1 \\
\end{bmatrix} \begin{bmatrix}
1 \\
1 \\
2/3 \\
\end{bmatrix} = \begin{bmatrix}
1/3 \\
2/3 \\
\end{bmatrix} = \mathbf{b}
\end{align*}\)
Optimal Transport connections

Computed with Python optimal Transport! [Flamary et al., 2021]
Optimal Transport connections

Euclidean cost
Squared Euclidean cost
Sqrt Euclidean cost

Computed with Python optimal Transport! [Flamary et al., 2021]
Wasserstein distance

Some properties

- Leverages geometry of sample spaces through C
- A solution always exists (ex. $\pi = \alpha \otimes \beta$)
- $\langle \Pi, C \rangle_F$ is linear in the transport plan and in the cost
- Convex in the transport plan Π
Wasserstein distance

Some properties

- Leverages geometry of sample spaces through C
- A solution always exists (ex. $\pi = \alpha \otimes \beta$)
- $\langle \Pi, C \rangle_F$ is linear in the transport plan and in the cost
- Convex in the transport plan Π

Definition (Wasserstein distance)

C is a ground metric, then OT cost W_p is a metric for $p \geq 1$ and where

$$W_p(\alpha, \beta, C^p) = \left(\min_{\Pi \in U(a,b)} \langle \Pi, C^p \rangle_F \right)^{1/p}$$

Proposition (Weak convergence)

The Wasserstein distance metrizes the weak convergence.

$$W_p(\delta_{\frac{1}{n}}, \delta_0, c) = c(\delta_{\frac{1}{n}}, \delta_0)$$
Optimal Transport has a dual program:

Proposition (Kantorovich duality)

\[\mathcal{L}(\alpha, \beta, c) = \sup_{(f,g)\in\mathcal{R}(c)} \int_X f(x) d\alpha(x) + \int_Y g(y) d\beta(y). \]

Where the set of admissible dual potentials is:

\[\mathcal{R}(c) = \{(f,g) \in \mathcal{C}(X) \times \mathcal{C}(Y) : \forall (x,y), f(x) + g(y) \leq c(x,y)\}. \]

Proposition (Discrete Kantorovich duality)

\[\mathcal{L}(\alpha, \beta, C) = \max_{(f,g)\in\mathcal{R}(C)} \langle f, a \rangle + \langle g, b \rangle. \]

Where the set of admissible dual potentials is:

\[\mathcal{R}(C) = \{(f,g) \in \mathbb{R}^n \times \mathbb{R}^n : \forall (i,j) \in [n]^2, f_i + g_j \leq C_{i,j}\}. \]

Can be solved with simplex algorithm with complexity of \(\mathcal{O}(n^3 \log(n)) \).
For the case of the Wasserstein-1 distance, we have:

Proposition (Kantorovich–Rubinstein duality)

\[
W_1(\alpha, \beta, C) = \sup_{f \in \text{Lip}^1(X)} \mathbb{E}_{x \sim \alpha}[f(x)] - \mathbb{E}_{z \sim \beta}[f(z)].
\]

Supremum is intractable → approximate it with a neural network.

Suppose \(\alpha\) is the probability distributions of real images and \(\beta_\theta\) is a parametric distribution we want to fit to \(\alpha\). We want to minimize

\[
\min_{\theta \in \Theta} W_1(\alpha, \beta_\theta, C) = \min_{\theta \in \Theta} \sup_{f \in \text{Lip}^1(X)} \mathbb{E}_{x \sim \alpha}[f(x)] - \mathbb{E}_{z \sim \beta}[f(z)],
\]

\[
\approx \min_{\theta \in \Theta} \max_{\phi \in \Phi} \mathbb{E}_{x \sim \alpha}[f_\phi(x)] - \mathbb{E}_{z \sim \beta}[f_\phi(z)].
\]

Where \(\Phi\) is compact. To ensure Lipschitz constraint WGAN clips weights and WGAN-GP uses a gradient penalty.
Summary on neural networks and optimal transport

- **Summary on neural networks**
 - Neural networks are stacked layers of neurons
 - Competitive methods on classification, domain adaptation and GANs

- **Summary on optimal transport**
 + Loss function/distance between distributions of samples
 + Leverages geometry of sample spaces through C
 - Cubical computational complexity of discrete OT
 + Useful dual formulations
Entropic Optimal Transport
Entropic Optimal Transport

Definition (Entropic Optimal Transport [Cuturi, 2013])

\[
\text{OT}^\varepsilon(\alpha, \beta, C) = \min_{\Pi \in U(a, b)} \sum_{i,j} \Pi_{i,j} C_{i,j} + \varepsilon \text{KL}(\Pi|a \otimes b)
\]

\[
\forall x, y \in \mathbb{R}_+^n, \text{KL}(x|y) = \sum_i x_i \log \left(\frac{x_i}{y_i} \right) - x_i + y_i
\]

- Functional is strongly convex in the transport plan
- Computational complexity of entropic OT is \(\mathcal{O}\left(\frac{n^2}{\varepsilon}\right)\)
Example of optimal plan

E-OT between two 2D discrete distributions

\[a_1 = \frac{1}{4}, \quad a_2 = \frac{1}{4}, \quad a_3 = \frac{1}{4}, \quad a_4 = \frac{1}{4}, \quad b_1 = \frac{1}{3}, \quad b_2 = \frac{2}{3} \]

E-OT plan, \(\varepsilon = 1 \)

\[
\Pi = \begin{bmatrix}
0.10 & 0.15 \\
0.02 & 0.23 \\
0.16 & 0.09 \\
0.05 & 0.20
\end{bmatrix} \quad \Pi 1_2 = \begin{bmatrix}
0.10 & 0.15 \\
0.02 & 0.23 \\
0.16 & 0.09 \\
0.05 & 0.20
\end{bmatrix} \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4}
\end{bmatrix} = a
\]
Example of optimal plan

\[\Pi = \begin{bmatrix} 0.10 & 0.15 \\ 0.02 & 0.23 \\ 0.16 & 0.09 \\ 0.05 & 0.20 \end{bmatrix} \]

\[\Pi^\top \mathbf{1}_2 = \begin{bmatrix} 0.10 & 0.02 & 0.16 & 0.05 \\ 0.15 & 0.23 & 0.09 & 0.20 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix} = b \]
Proposition (Convergence with ε)

We denote Π^ε the optimal transport plan of entropic OT. We have the following convergence property:

$$\text{OT}^\varepsilon(\alpha, \beta, C) \xrightarrow[\varepsilon \to 0]{} \text{OT}(\alpha, \beta, C)$$

$$\Pi^\varepsilon \xrightarrow[\varepsilon \to +\infty]{} a \otimes b$$

Proposition (Solution of the regularized Kantarovich problem)

The solution of the regularized (entropic) Kantarovich problem has the form:

$$\forall (i, j) \in [n] \times [m], P^\varepsilon_{i,j} = u_i \exp(-C/\varepsilon)_{i,j} v_j$$

for 2 unknown scaling variable $(u, v) \in \mathbb{R}_+^n \times \mathbb{R}_+^m$.
The algorithm performs alternatively a scaling along the rows and columns of K to match the desired marginals.

- Computational complexity $\mathcal{O}(\kappa n^2)$
- Fast implementation in parallel (GPU)
Optimal Transport connections

Computed with Python optimal Transport ! [Flamary et al., 2021]
Optimal Transport connections

Euclidean, $\lambda = 0.005$
Squared Euclidean, $\lambda = 0.005$
Sqrt Euclidean, $\lambda = 0.005$

Computed with Python optimal Transport ! [Flamary et al., 2021]
Optimal Transport has a dual program:

Proposition (entropic OT duality)

\[
\text{OT}^\varepsilon(\alpha, \beta, C) = \max_{(f,g) \in (\mathbb{R}^n)^2} \langle f, a \rangle + \langle g, b \rangle - \varepsilon \langle \frac{e^f}{\varepsilon}, K \frac{e^g}{\varepsilon} \rangle.
\]

Note the unconstrained dual contrary to exact OT.

The optimal \((f, g)\) are linked to scalings \((u, v)\) appearing in the Sinkhorn algorithm through

\[
(u, v) = \left(\frac{e^f}{\varepsilon}, \frac{e^g}{\varepsilon} \right)
\]

(1)
Proposition (Derivative with respect to weights)

For $\varepsilon > 0$, $(a, b) \mapsto \text{OT}^\varepsilon((a, X), (b, Y), C')$ is differentiable. Its gradient reads

$$\nabla \text{OT}^\varepsilon((a, X), (b, Y), C') = (f, g)$$

where (f, g) is the unique solution, centered such that $\sum_i f_i = \sum_j g_j = 0$. For $\varepsilon = 0$, this formula defines the elements of the sub-differential.

Proposition (Derivative with respect to the cost)

For fixed input histograms (a, b), for $\varepsilon > 0$, the mapping $C \mapsto \text{OT}^\varepsilon((a, X), (b, Y), C')$ is smooth, and

$$\nabla_C \text{OT}^\varepsilon((a, X), (b, Y), C') = \Pi^\varepsilon$$

For $\varepsilon = 0$, this formula defines the set of upper gradients.
Limits of entropic optimal transport

Unfortunately, entropic OT is not a distance.

Proposition (Entropic OT losses distance properties)

\[OT^\varepsilon(\alpha, \alpha, C) > 0. \]

We can nonetheless define a new loss function called the Sinkhorn divergence as:

Proposition (Sinkhorn divergences)

\[
S^\varepsilon(\alpha, \beta, C) = OT^\varepsilon(\alpha, \beta, C) - \frac{1}{2}(OT^\varepsilon(\alpha, \alpha, C) + OT^\varepsilon(\beta, \beta, C)).
\]

The Sinkhorn divergence defines a divergence between probability measures [Feydy et al., 2019] and interpolate between OT and MMD [Gretton et al., 2012]. It has also better statistical properties than OT.
Unbalanced Optimal Transport
Unbalanced Optimal Transport

Definition

Unbalanced Optimal transport measures the distance between distributions, but with relaxed marginals.

\[
\text{UOT}^\tau,\varepsilon (\alpha, \beta, c) = \min_{\pi \in M_+(X \times Y)} \int c d\pi + \tau (\text{KL}(\pi_1||\alpha) + \text{KL}(\pi_2||\beta)),
\]

where \(\pi \) is the transport plan, \(\pi_1 \) and \(\pi_2 \) the plan’s marginals, \(\tau \geq 0 \) is the marginal penalization and \(\varepsilon \geq 0 \) is the regularization coefficient.

Difference with OT

- \(\pi \in U(\alpha, \beta) \rightarrow \pi \in M_+(X \times Y) \)
- Fixed marginal constraints are replaced by \(\text{KL}(\pi_1||\alpha) \) penalties
- Unique marginals \(\pi_1 \) and \(\pi_2 \)
- \(\text{KL} \) can be replaced by \(\text{TV} \)
Entropic unbalanced Optimal Transport

Definition

Entropic unbalanced Optimal transport measures the distance between distributions, but with relaxed marginals.

$$UOT^{\tau,\varepsilon}(\alpha, \beta, c) = \min_{\pi \in \mathcal{M}_+(X \times Y)} \int c d\pi + \varepsilon KL(\pi | \alpha \otimes \beta)$$

$$+ \tau (KL(\pi_1 || \alpha) + KL(\pi_2 || \beta)),$$

where π is the transport plan, π_1 and π_2 the plan’s marginals, $\tau \geq 0$ is the marginal penalization and $\varepsilon \geq 0$ is the regularization coefficient.

Difference with UOT

- Unique solution Π
- Can be solved with a generalized Sinkhorn algorithm
- $UOT^{\tau,\varepsilon}(\alpha, \alpha, c) > 0$ but can define a Sinkhorn UOT variant

[Séjourné et al., 2019]
Influence of τ

Let us study the optimal transport plan for a fixed problem and a various τ.

Key message: Smaller τ decreases the transported mass as it is less costly to be "lazy".
Influence of higher cost

Let us study the optimal transport plan for a dynamic problem and a fixed τ.

Key message: The more costly a sample is to transport, the less it is transported.
Time experiment

Limits
Can not be used in Big Data scenario!
Minibatch Optimal Transport
Let $m \leq n$, [Damodaran et al., 2018, Genevay et al., 2018] compute optimal transport between minibatch of distributions.

Minibatch strategy

- Select m samples without replacement at random in domains
- Compute OT between the minibatches
- Average several MBOT terms → complexity $O(m^3)$
Minibatch Optimal Transport definition

Expectation of minibatches

Computing OT kernel h between minibatches estimates:

$$E_h(\alpha, \beta, C) := \mathbb{E}_{(X,Y) \sim \alpha \otimes m \otimes \beta \otimes m} [h(\mu_m, \mu_m, C(X, Y))]$$

- Can be defined for OT variants h
- Justified in [Fatras et al., 2020]
Estimate minibatch OT distance

Definition (Complete minibatch estimator)

\[
\bar{h}^m(X, Y) := \left(\begin{pmatrix} n \\ m \end{pmatrix} \right)^{-2} \sum_{I,J \in \mathcal{P}_m} h(\mu_m, \mu_m, C_{I,J})
\]

\[
\Pi^m(X, Y) := \left(\begin{pmatrix} n \\ m \end{pmatrix} \right)^{-2} \sum_{I,J \in \mathcal{P}_m} \Pi_{I,J}
\]

- where \(\mathcal{P}_m \) is the set of all \(m \)-tuples without replacement
- \(\Pi^m(X, Y) \) is an admissible transport plan between the input probability distributions \(\Pi \in U(\mu_n, \mu_n) \)

Definition (Incomplete minibatch estimator)

\[
\tilde{h}^m_k(X, Y) := k^{-1} \sum_{(I,J) \in D_k} h(\mu_m, \mu_m, C_{I,J})
\]

where \(k > 0 \) is an integer and \(D_k \) is a set of cardinality \(k \) whose elements are minibatches drawn at random
From the 1D OT closed-form formula, we have:

\[
\pi_{j,k} = \frac{1}{m} \left(\frac{n}{m} \right)^{-2} \sum_{i=i_{\text{min}}}^{i_{\text{max}}} \binom{j-1}{i-1} \binom{k-1}{i-1} \binom{n-j}{m-i} \binom{n-k}{m-i}
\]

where \(i_{\text{min}} = \max(0, m - n + j, m - n + k)\) and \(i_{\text{max}} = \min(j, k)\)
A few key home message on minibatch OT.

- Not a distance
- Can not define a divergence like Sinkhorn divergence
- Better statistical properties
- A new loss function based on OT but not OT
Applications
Generative models

Taken from [Gulrajani et al., 2017].
Office Home Domain Adaptation dataset

Network: pre-trained ResNet 50 with an additional classification layer.

Figure taken from [Venkateswara et al., 2017]. 65 classes in the source and target domains for balanced DA and 25 classes in the target domains for partial DA.
Domain Adaptation experiments

<table>
<thead>
<tr>
<th>Method</th>
<th>A-C</th>
<th>A-P</th>
<th>A-R</th>
<th>C-A</th>
<th>C-P</th>
<th>C-R</th>
<th>P-A</th>
<th>P-C</th>
<th>P-R</th>
<th>R-A</th>
<th>R-C</th>
<th>R-P</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td></td>
</tr>
<tr>
<td>RESNET-50</td>
<td>34.9</td>
<td>50.0</td>
<td>58.0</td>
<td>37.4</td>
<td>41.9</td>
<td>46.2</td>
<td>38.5</td>
<td>31.2</td>
<td>60.4</td>
<td>53.9</td>
<td>41.2</td>
<td></td>
<td>59.9</td>
</tr>
<tr>
<td>DANN (*)</td>
<td>44.3</td>
<td>59.8</td>
<td>69.8</td>
<td>48.0</td>
<td>58.3</td>
<td>63.0</td>
<td>49.7</td>
<td>42.7</td>
<td>70.6</td>
<td>64.0</td>
<td>51.7</td>
<td></td>
<td>78.3</td>
</tr>
<tr>
<td>CDAN-E (*)</td>
<td>52.5</td>
<td>71.4</td>
<td>76.1</td>
<td>59.7</td>
<td>69.9</td>
<td>71.5</td>
<td>58.7</td>
<td>50.3</td>
<td>77.5</td>
<td>70.5</td>
<td>57.9</td>
<td></td>
<td>83.5</td>
</tr>
<tr>
<td>DEEPJDOT (*)</td>
<td>50.7</td>
<td>68.6</td>
<td>74.4</td>
<td>59.9</td>
<td>65.8</td>
<td>68.1</td>
<td>55.2</td>
<td>46.3</td>
<td>73.8</td>
<td>66.0</td>
<td>54.9</td>
<td></td>
<td>78.3</td>
</tr>
<tr>
<td>ALDA (*)</td>
<td>52.2</td>
<td>69.3</td>
<td>76.4</td>
<td>58.7</td>
<td>68.2</td>
<td>71.1</td>
<td>57.4</td>
<td>49.6</td>
<td>76.8</td>
<td>70.6</td>
<td>57.3</td>
<td></td>
<td>82.5</td>
</tr>
<tr>
<td>ROT (*)</td>
<td>47.2</td>
<td>71.8</td>
<td>76.4</td>
<td>58.6</td>
<td>68.1</td>
<td>70.2</td>
<td>56.5</td>
<td>45.0</td>
<td>75.8</td>
<td>69.4</td>
<td>52.1</td>
<td></td>
<td>80.6</td>
</tr>
<tr>
<td>JUMBOT</td>
<td>55.2</td>
<td>75.5</td>
<td>80.8</td>
<td>65.5</td>
<td>74.4</td>
<td>74.9</td>
<td>65.2</td>
<td>52.7</td>
<td>79.2</td>
<td>73.0</td>
<td>59.9</td>
<td></td>
<td>83.4</td>
</tr>
<tr>
<td>PDA</td>
<td></td>
</tr>
<tr>
<td>RESNET-50</td>
<td>46.3</td>
<td>67.5</td>
<td>75.9</td>
<td>59.1</td>
<td>59.9</td>
<td>62.7</td>
<td>58.2</td>
<td>41.8</td>
<td>74.9</td>
<td>67.4</td>
<td>48.2</td>
<td></td>
<td>74.2</td>
</tr>
<tr>
<td>DEEPJDOT (*)</td>
<td>48.2</td>
<td>66.2</td>
<td>76.6</td>
<td>56.1</td>
<td>57.8</td>
<td>64.5</td>
<td>58.3</td>
<td>42.7</td>
<td>73.5</td>
<td>65.7</td>
<td>48.2</td>
<td></td>
<td>73.7</td>
</tr>
<tr>
<td>PADA</td>
<td>51.9</td>
<td>67.0</td>
<td>78.7</td>
<td>52.2</td>
<td>53.8</td>
<td>59.0</td>
<td>52.6</td>
<td>43.2</td>
<td>78.8</td>
<td>73.7</td>
<td>56.6</td>
<td></td>
<td>77.1</td>
</tr>
<tr>
<td>ETN</td>
<td>59.2</td>
<td>77.0</td>
<td>79.5</td>
<td>62.9</td>
<td>65.7</td>
<td>75.0</td>
<td>68.3</td>
<td>55.4</td>
<td>84.4</td>
<td>75.7</td>
<td>57.7</td>
<td></td>
<td>84.5</td>
</tr>
<tr>
<td>BA3US (*)</td>
<td>56.7</td>
<td>76.0</td>
<td>84.8</td>
<td>73.9</td>
<td>67.8</td>
<td>83.7</td>
<td>72.7</td>
<td>56.5</td>
<td>84.9</td>
<td>77.8</td>
<td>64.5</td>
<td></td>
<td>83.8</td>
</tr>
<tr>
<td>JUMBOT</td>
<td>62.7</td>
<td>77.5</td>
<td>84.4</td>
<td>76.0</td>
<td>73.3</td>
<td>80.5</td>
<td>74.7</td>
<td>60.8</td>
<td>85.1</td>
<td>80.2</td>
<td>66.5</td>
<td></td>
<td>83.9</td>
</tr>
</tbody>
</table>

OT have state-of-the-art results [Fatras et al., 2021].

Interpolating between optimal transport and mmd using sinkhorn divergences.
In *Proceedings of Machine Learning Research*.

Pot: Python optimal transport.

Learning generative models with sinkhorn divergences.
In *Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics*.

Generative adversarial nets.
A kernel two-sample test.

Improved training of wasserstein gans.

On translation of mass (in russian).
Proceedings of the USSR Academy of Sciences.

Sinkhorn divergences for unbalanced optimal transport.

Deep hashing network for unsupervised domain adaptation.