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Introduction on deep learning and optimal transport
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Introduction on Neural

networks



Neural network illustration

Deep learning is a tool to estimate non-linear complex functions

• Neural networks: many stacked layers and each layer is made of

neurones

• Parameters of neural networks: connections between layers

• Di↵erent layers: convolutional layers, fully connected layers, ...
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Motivating example: Classification

• Find a function f✓ which describes the relationship between the

space of images and the space of classes

• f✓ is a neural network !

f✓

0

BBBBB@

1

CCCCCA

0

@

1

A
0.1 clown fish

= 0.2 grouper

0.7 turtle

• n training samples: (x1,y1), · · · , (xn,yn)

• Goal: minimizing the empirical risk with respect to ✓

min✓ R(f✓) = min✓
1

N

NX

i=1

L(yi, f✓(xi))
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Motivating example: Domain adaptation

Domain adaptation (DA) setting

• Two domains with same classes, only one with labels

• Goal: classify unlabeled target data with source labeled data

• xs
i ,x

t
j have same class ! g�(xi) ⇡ g�(xj) and yi = f✓(g�(xj)))
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Motivating example: Generative adversarial networks

Goal: generating new images

• Generative adversarial networks (GANs) developed in

[Goodfellow et al., 2014]

• G✓ tries to fool D�

• D� tries to predict if an image is real or not
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Motivating example: Generative adversarial networks

Goal: generating new images

• ↵ 2 P(X ), ⇣ 2 P(Z) are probability distributions

• Loss: min✓ max� Ex⇠↵ log
�
D�(x)

�
� Ez⇠⇣ log

�
1�D�(G✓(z))

�

The loss can be reformulated with a Jensen-Shannon divergence

between generated and training distributions
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Training samples as distributions paradigm

Applications use probability distributions to train neural networks

• Classification: function L takes probability vectors as inputs

• Domain adaptation: align embedding probability distributions

from domains

• GANs: distance between generated and training distributions

✓̂ = argmin
✓2⇥

L(↵n,�✓)

Goal : Find a suitable function L between probability distributions
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Divergence and metric between probability distributions

Definition (Divergence)

Consider a set S. A divergence on S is a function d : S ⇥ S 7! [0,1]

such that for all x,y:

• d(x,y) � 0 (non negativity)

• d(x,y) = 0 if and only if x = y (separability)

Definition (Distance/Metric)

Consider a set S. A distance on S is a function d : S ⇥ S 7! [0,1]

such that for all x,y, z:

• d(x,y) � 0 (non negativity)

• d(x,y) = 0 if and only if x = y (separability)

• d(x,y) = d(y,x) (symmetry)

• d(x, z)  d(x,y) + d(y, z) (triangle inequality)

7 / 45



Comparing probability distributions
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Comparing probability distributions

Suppose ' convex, '(1) = 0 and ↵ absolutely continuous wrt �.

'-divergences compare mass ratio point-wise ↵(x)/�(x) (�(x) > 0).

L'(↵|�) =

Z

X
'

✓
d↵

d�

◆
d�

We give several examples of '-divergences.

8 / 45



Comparing probability distributions

Suppose ' convex, '(1) = 0 and ↵ absolutely continuous wrt �.

'-divergences compare mass ratio point-wise ↵(x)/�(x) (�(x) > 0).

L'(↵|�) =

Z

X
'

✓
d↵

d�

◆
d�

We can get the Kullback-Leibler divergence for '(x) = x log(x),

KL(↵|�) =

Z

X
log

✓
d↵

d�

◆
d↵
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Comparing probability distributions

Suppose ' convex, '(1) = 0 and ↵ absolutely continuous wrt �.

'-divergences compare mass ratio point-wise ↵(x)/�(x) (�(x) > 0).

L'(↵|�) =

Z

X
'

✓
d↵

d�

◆
d�

We can get the Total-Variation norm for '(x) = 1
2 |x� 1|,

TV(↵|�) =

Z

X

1

2

����
d↵

d�
� 1

���� d↵
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Comparing probability distributions

Suppose ' convex, '(1) = 0 and ↵ absolutely continuous wrt �.

'-divergences compare mass ratio point-wise ↵(x)/�(x) (�(x) > 0).

L'(↵|�) =

Z

X
'

✓
d↵

d�

◆
d�

• '-divergences cannot compare Diracs

! fail to capture the geometry

• KL(↵|�t) = +1
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Comparing probability distributions

Suppose ' convex, '(1) = 0 and ↵ absolutely continuous wrt �.

'-divergences compare mass ratio point-wise ↵(x)/�(x) (�(x) > 0).

L'(↵|�) =

Z

X
'

✓
d↵

d�

◆
d�

• '-divergences cannot compare Diracs

! fail to capture the geometry

• KL(↵|�t) = +1 but KL(↵|�1) = 0
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Weak convergence topology

Definition (Convergence in metric space)

A sequence {lt}t2N of elements of a metric space (S, d) is said to

converge to a limit l 2 S if limt!1d(lt, l) = 0.

For probability distributions, sequence �t convergences to � with

respect to a divergence d if limt!1d(�t,�) = 0. (Be carreful with the

symmetry !)

'-divergences do not metrize the weak convergence.

Example (TV-divergences)

For the probability sequence � 1
n
, It is clear that limt!1� 1

n
= �0 but

we have limt!1 TV(� 1
n
, �0) = limt!11 = 1.

So we are looking for a function d which ca compare probability

distributions and which metrizes the weak convergence.
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Introduction on Optimal

Transport



Optimal Transport definition

Ingredients

• Probability distributions ↵ 2 P(X ) and � 2 P(Y)

• A ground cost c : X ⇥ Y ! R+
with X and Y metric spaces
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Optimal Transport definition

Definition (Kantorovich problem [Kantorovich, 1942])

min
⇡2U(↵,�)

Z

X⇥Y
c(x,y)d⇡(x,y)

with : U(↵,�) = {⇡ 2 P(X ⇥Y),

Z

Y
⇡(x,y)dy = ↵,

Z

X
⇡(x,y)dx = �}
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Discrete Optimal Transport

Discrete ingredients

• Discrete distributions ↵ =
Pn

i=1 ai�xi and � =
Pn

j=1 bj�yj

• Cost matrix C = C(X,Y ), such that Ci,j = c(xi,yj)
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Discrete Optimal Transport

For discrete distributions, OT becomes a linear program:

Definition (Discrete Optimal Transport)

OT(↵,�, C) = min
⇧2U(a,b)

X

i,j

⇧i,jCi,j

U(a,b) =
n
⇧ 2

�
R+

�n1⇥n2
|⇧1n1 = a,⇧T

1n2 = b

o
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Example of optimal plan

Consider the following 2D example:

The probability distribution weights are:

a = [1/4, 1/4, 1/4, 1/4]>

b = [1/3, 2/3]>

What is the optimal transport plan ⇧ ?
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Example of optimal plan
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1
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Example of optimal plan

⇧ =

2

6664

0.083 0.167

0 0.25

0.25 0

0 0.25

3

7775
⇧

>
12 =

"
0.083 0 0.25 0

0.167 0.25 0 0.25

#
2

6664

1

1

1

1

3

7775
=

"
1/3

2/3

#
= b
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Optimal Transport connections

Computed with Python optimal Transport ! [Flamary et al., 2021]
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Optimal Transport connections

Computed with Python optimal Transport ! [Flamary et al., 2021]
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Wasserstein distance

Some properties

• Leverages geometry of sample spaces through C

• A solution always exists (ex. ⇡ = ↵⌦ �)

• h⇧, CiF is linear in the transport plan and in the cost

• Convex in the transport plan ⇧
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Wasserstein distance

Some properties

• Leverages geometry of sample spaces through C

• A solution always exists (ex. ⇡ = ↵⌦ �)

• h⇧, CiF is linear in the transport plan and in the cost

• Convex in the transport plan ⇧

Definition (Wasserstein distance)

C is a ground metric, then OT cost Wp is a metric for p � 1 and where

Wp(↵,�, C
p
) =

⇣
min

⇧2U(a,b)
h⇧, Cp

iF

⌘1/p

Proposition (Weak convergence)

The Wasserstein distance metrizes the weak convergence.

Wp(� 1
n
, �0, c) = c(� 1

n
, �0)
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Dual of optimal transport

Optimal Transport has a dual program:

Proposition (Kantorovich duality)

L(↵,�, c) = sup

(f,g)2R(c)

Z

X
f(x)d↵(x) +

Z

Y
g(y)d�(y).

Where the set of admissible dual potentials is :

R(c) = {(f, g) 2 C(X )⇥ C(Y) : 8(x,y), f(x) + g(y)  c(x,y)}.

Proposition (Discrete Kantorovich duality)

L(↵,�, C) = max
(f,g)2R(C)

hf,ai+ hg,bi.

Where the set of admissible dual potentials is :

R(C) = {(f, g) 2 Rn
⇥ Rn

: 8(i, j) 2 JnK2, fi + gj  Ci,j}.

Can be solved with simplex algorithm with complexity of O(n3log(n)).
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Kantorovich-Rubinstein duality theorem

For the case of the Wasserstein-1 distance, we have:

Proposition (Kantorovich–Rubinstein duality)

W1(↵,�, C) = supf2Lip1(X ) Ex⇠↵[f(x)]� Ez⇠� [f(z)].

Supremum is intractable 7! approximate it with a neural network.

Suppose ↵ is the probability distributions of real images and �✓ is a

parametric distribution we want to fit to ↵. We want to minimize

min✓2⇥ W1(↵,�✓, C) = min✓2⇥ supf2Lip1(X ) Ex⇠↵[f(x)]� Ez⇠� [f(z)],

⇡ min✓2⇥ max�2� Ex⇠↵[f�(x)]� Ez⇠� [f�(z)].

Where � is compact. To ensure Lipschitz constraint WGAN clips

weights and WGAN-GP uses a gradient penalty.
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Summary on neural networks and optimal transport
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• Summary on neural networks

• Neural networks are stacked layers

of neurons

• Competitive methods on

classification, domain adaptation

and GANs

• Summary on optimal transport

+ Loss function/distance between

distributions of samples

+ Leverages geometry of sample

spaces through C

- Cubical computational complexity

of discrete OT

+ Useful dual formulations
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Entropic Optimal Transport



Entropic Optimal Transport

Definition (Entropic Optimal Transport [Cuturi, 2013])

OT
"
(↵,�, C) = min

⇧2U(a,b)

X

i,j

⇧i,jCi,j + "KL(⇧|a⌦ b)

8x,y 2 Rn
+,KL(x|y) =

X

i

xi log

⇣xi

yi

⌘
� xi + yi

• Functional is strongly convex in the transport plan

• Computational complexity of entropic OT is O

⇣
n2

"

⌘
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Example of optimal plan
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Example of optimal plan

⇧ =

2

6664

0.10 0.15

0.02 0.23

0.16 0.09

0.05 0.20

3

7775
⇧

>
12 =

"
0.10 0.02 0.16 0.05

0.15 0.23 0.09 0.20

#
2

6664

1

1

1

1

3

7775
=

"
1/3

2/3

#
= b
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Form of the solution

Proposition (Convergence with ")

We denote ⇧
"
the optimal transport plan of entropic OT. We have the

following convergence property:

OT
"
(↵,�, C) !

"!0
OT(↵,�, C)

⇧
"
!

"!+1
a⌦ b

Proposition (Solution of the regularized Kantarovich

problem)

The solution of the regularized (entropic) Kantarovich problem has the

form:

8(i, j) 2 JnK⇥ JmK, P "
i,j = ui exp(�C/")i,jvj

for 2 unknown scaling variable (u, v) 2 Rn
+ ⇥ Rm

+ .
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Sinkhorn algorithm

Algorithm 1 Pseudo-code Sinkhorn-Knopp algorithm

Require: Inputs : weights (a, b), cost matrix C, coe�cient "

1: u(0)
 Rn

+

2: K  exp(�C/")

3: for i in 1, · · · , do

4: v(i)  b↵KTu(i�1)

5: u(i)
 a↵Kv(i)

6: end for

7: return ⇧ = diag(u()
)K diag(v())

• The algorithm performs alternatively a scaling along the rows and

columns of K to match the desired marginals

• Computational complexity O(n2
)

• Fast implementation in parallel (GPU)
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Optimal Transport connections

Computed with Python optimal Transport ! [Flamary et al., 2021]
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Optimal Transport connections

Computed with Python optimal Transport ! [Flamary et al., 2021]
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Dual of entropic optimal transport

Optimal Transport has a dual program:

Proposition (entropic OT duality)

OT
"
(↵,�, C) = max

(f,g)2(Rn)2
hf,ai+ hg,bi � "hef/",Keg/"i.

Note the unconstrained dual contrary to exact OT.

The optimal (f, g) are linked to scalings (u, v) appearing in the

Sinkhorn algorithm through

(u, v) = (ef/", eg/") (1)
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Derivative of entropic optimal transport

Proposition (Derivative with respect to weights)

For " > 0, (a, b) 7! OT
"
((a,X), (b,Y ), C) is di↵erentiable. Its

gradient reads

rOT
"
((a,X), (b,Y ), C) = (f, g)

where (f, g) is the unique solution, centered such thatP
i fi =

P
j gj = 0. For " = 0, this formula defines the elements of

the sub-di↵erential.

Proposition (Derivative with respect to the cost)

For fixed input histograms (a, b), for " > 0, the mapping

C 7! OT
"
((a,X), (b,Y ), C) is smooth, and

rC OT
"
((a,X), (b,Y ), C) = ⇧

"

For " = 0, this formula defines the set of upper gradients.
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Limits of entropic optimal transport

Unfortunately, entropic OT is not a distance.

Proposition (Entropic OT losses distance properties)

OT
"
(↵,↵, C) > 0.

We can nonetheless define a new loss function called the Sinkhorn

divergence as:

Proposition (Sinkhorn divergences)

S
"
(↵,�, C) = OT

"
(↵,�, C)�

1

2
(OT

"
(↵,↵, C) + OT

"
(�,�, C)).

The Sinkhorn divergence defines a divergence between probability

measures [Feydy et al., 2019] and interpolate between OT and MMD

[Gretton et al., 2012]. It has also better statistical properties than OT.
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Transport



Unbalanced Optimal Transport

Definition

Unbalanced Optimal transport measures the distance between

distributions, but with relaxed marginals.

UOT
⌧,"

(↵,�, c) = min
⇡2M+(X⇥Y)

Z
cd⇡+⌧(KL(⇡1k↵) + KL(⇡2k�)),

where ⇡ is the transport plan, ⇡1 and ⇡2 the plan’s marginals, ⌧ � 0

is the marginal penalization and " � 0 is the regularization coe�cient.

Di↵erence with OT

• ⇡ 2 U(↵,�) �! ⇡ 2M+(X ⇥ Y)

• Fixed marginal constraints are replaced by KL(⇡1k↵) penalties

• Unique marginals ⇡1 and ⇡2

• KL can be replaced by TV
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Entropic unbalanced Optimal Transport

Definition

Entropic unbalanced Optimal transport measures the distance

between distributions, but with relaxed marginals.

UOT
⌧,"

(↵,�, c) = min
⇡2M+(X⇥Y)

Z
cd⇡ + "KL(⇡|↵⌦ �)

+⌧(KL(⇡1k↵) + KL(⇡2k�)),

where ⇡ is the transport plan, ⇡1 and ⇡2 the plan’s marginals, ⌧ � 0

is the marginal penalization and " � 0 is the regularization coe�cient.

Di↵erence with UOT

• Unique solution ⇧

• Can be solved with a generalized Sinkhorn algorithm

• UOT
⌧,"

(↵,↵, c) > 0 but can define a Sinkhorn UOT variant

[Séjourné et al., 2019]
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Influence of ⌧

Let us study the optimal transport plan for a fixed problem and a

various ⌧ .

827�͉ �����͘ �����

����

����

����

����

����

����

_̵_�  ����

����

����

����

����

����

����

827�͉ �����͘ ����

����

����

����

����

����

����

_̵_�  ����

����

����

����

����

����

����

827�͉ �����͘ ����

����

����

����

����

����

����

_̵_�  ����

����

����

����

����

����

����

827�͉ �����͘ �����

����

����

����

����

����

����

_̵_�  ����

����

����

����

����

����

����

Key message: Smaller ⌧ decreases the transported mass as it is less

costly to be ”lazy”.
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Influence of higher cost

Let us study the optimal transport plan for a dynamic problem and a

fixed ⌧ .
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Key message: The more costly a sample is to transport, the less it is

transported.
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Time experiment

Limits

Can not be used in Big Data scenario !

35 / 45



Minibatch Optimal Transport



Minibatch Optimal Transport definition

Let m  n, [Damodaran et al., 2018, Genevay et al., 2018] compute

optimal transport between minibatch of distributions.

Minibatch strategy

• Select m samples without replacement at random in domains

• Compute OT between the minibatches

• Average several MBOT terms ! complexity O(m3
)
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Minibatch Optimal Transport definition

Expectation of minibatches

Computing OT kernel h between minibatches estimates:

Eh(↵,�, C) := E(X,Y )⇠↵⌦m⌦�⌦m [h(µm, µm, C(X,Y ))]

• Can be defined for OT variants h

• Justified in [Fatras et al., 2020]
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Estimate minibatch OT distance

Definition (Complete minibatch estimator)

h
m
(X,Y ) :=

✓
n

m

◆�2 X

I,J2Pm

h(µm, µm, CI,J)

⇧
m
(X,Y ) :=

✓
n

m

◆�2 X

I,J2Pm

⇧I,J

• where Pm is the set of all m-tuples without replacement

• ⇧
m
(X,Y ) is an admissible transport plan between the input

probability distributions ⇧ 2 U(µn, µn)

Definition (Incomplete minibatch estimator)

ehm
k (X,Y ) := k�1

X

(I,J)2Dk

h(µm, µm, CI,J)

where k > 0 is an integer and Dk is a set of cardinality k whose elements

are minibatches drawn at random

38 / 45



1D Minibatch Optimal Transport closed-form

From the 1D OT closed-form formula, we have:

⇡j,k =
1

m

✓
n

m

◆�2 imaxX

i=imin

✓
j � 1

i� 1

◆✓
k � 1

i� 1

◆✓
n� j

m� i

◆✓
n� k

m� i

◆

where imin = max(0,m� n+ j,m� n+ k) and imax = min(j, k)
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Limits of Minibatch Optimal Transport

A few key home message on minibatch OT.

• Not a distance

• Can not define a divergence like Sinkhorn divergence

• Better statistical properties

• A new loss function based on OT but not OT
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Applications



Generative models

Taken from [Gulrajani et al., 2017].
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O�ce Home Domain Adaptation dataset

Network : pre-trained ResNet 50 with an additional classification

layer.

Figure taken from [Venkateswara et al., 2017]. 65 classes in the source

and target domains for balanced DA and 25 classes in the target

domains for partial DA.
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Domain Adaptation experiments

da

Method A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P avg

resnet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
dann (*) 44.3 59.8 69.8 48.0 58.3 63.0 49.7 42.7 70.6 64.0 51.7 78.3 58.3
cdan-e(*) 52.5 71.4 76.1 59.7 69.9 71.5 58.7 50.3 77.5 70.5 57.9 83.5 66.6

deepjdot (*) 50.7 68.6 74.4 59.9 65.8 68.1 55.2 46.3 73.8 66.0 54.9 78.3 63.5
alda (*) 52.2 69.3 76.4 58.7 68.2 71.1 57.4 49.6 76.8 70.6 57.3 82.5 65.8
rot (*) 47.2 71.8 76.4 58.6 68.1 70.2 56.5 45.0 75.8 69.4 52.1 80.6 64.3
jumbot 55.2 75.5 80.8 65.5 74.4 74.9 65.2 52.7 79.2 73.0 59.9 83.4 70.0

pda

resnet-50 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.4
deepjdot(*) 48.2 66.2 76.6 56.1 57.8 64.5 58.3 42.7 73.5 65.7 48.2 73.7 60.9

pada 51.9 67.0 78.7 52.2 53.8 59.0 52.6 43.2 78.8 73.7 56.6 77.1 62.1
etn 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.4

ba3us(*) 56.7 76.0 84.8 73.9 67.8 83.7 72.7 56.5 84.9 77.8 64.5 83.8 73.6
jumbot 62.7 77.5 84.4 76.0 73.3 80.5 74.7 60.8 85.1 80.2 66.5 83.9 75.5

OT have state-of-the-art results [Fatras et al., 2021].
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